Forgot password?
 Create new account
View 272|Reply 2

[几何] stereographic projection

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-7-18 01:23:41 |Read mode
Last edited by hbghlyj at 2022-8-7 22:58:00pi.math.cornell.edu/~boyang/2220%20s2017/math … es/notes_sec_2.1.pdf
$S: \mathbb{R}^{2} \rightarrow S \backslash\{N\}$ has the formula: $$ S(x, y)=(X, Y, Z)=\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right) $$
It is not hard to show that $S$ has an inverse function $F: S \backslash\{N\} \rightarrow \mathbb{R}^{2}$ : $$ F(X, Y, Z)=(x, y)=\left(\frac{X}{1-Z}, \frac{Y}{1-Z}\right) \text {. } $$ Screenshot 2022-07-17 at 18-21-18 notes_sec_2.1.pdf.png


Screenshot 2022-07-17 at 18-21-52 A2 Complex Analysis Lecture 2.png PROOF.
The general point on the line joining $z$ and $N$ is $t(0,0,1)+(1-t)(x, y, 0)$. There is a unique value of $t$ for which this point lies on the sphere, namely $t=\left(x^{2}+y^{2}-1\right) /\left(x^{2}+y^{2}+1\right)$, as can be easily checked.
Remark This can be written as$$S(z)=\frac{1}{1+|z|^{2}}\left(2 \Re(z), 2 \Im(z),|z|^{2}-1\right)$$
Screenshot 2022-07-17 at 18-22-27 A2 Complex Analysis Lecture 2.png We have identified $\mathbb{C}$ with $\mathbb{S} \backslash\{N\}$ by stereographic projection. $\mathbb{S} \backslash\{N\}$ has a natural metric: the one induced from the Euclidean metric on $\mathbb{R}^{3}$. This induces a metric on $\mathbb{C}$, which we call $d$. To spell it out, $$ d(z, w):=\|S(z)-S(w)\| . $$ LEMMA
For any $z, w \in \mathbb{C}$ we have $$ d(z, w)=\frac{2|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}} $$
Screenshot 2022-07-17 at 18-23-24 A2 Complex Analysis Lecture 2.png Since $\|S(z)\|=\|S(w)\|=1$ we have $$ \|S(z)-S(w)\|^{2}=2-2\langle S(z), S(w)\rangle . $$ Using the formulae, $$ \langle S(z), S(w)\rangle=1-\frac{2|z-w|^{2}}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)} . $$ Therefore $$ \|S(z)-S(w)\|^{2}=\frac{4|z-w|^{2}}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)} $$ as required.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2022-7-18 02:04:13
Using the formulae,$$\langle S(z), S(w)\rangle=1-\frac{2|z-w|^{2}}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)} .$$

In detail:
\begin{align*}
\langle S(z), S(w)\rangle
&=\left<\frac{1}{1+|z|^{2}}\left(2 \Re(z), 2 \Im(z),|z|^{2}-1\right),\frac{1}{1+|w|^{2}}\left(2 \Re(w), 2 \Im(w),|w|^{2}-1\right)\right>\\
&=\frac{4\Re(z)\Re(w)+4\Im(z)\Im(w)+(|z|^2-1)(|w|^2-1)}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}\\
&=\frac{4\Re(z\bar w)+(|z|^2-1)(|w|^2-1)}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}\\
&=\frac{2(z\bar w+\bar zw)+(|z|^2-1)(|w|^2-1)}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}\\
&=\frac{2\left(|z|^2+|w|^2-|z-w|^2\right)+(|z|^2-1)(|w|^2-1)}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}\\
&=1-\frac{2|z-w|^{2}}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}
\end{align*}

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2022-8-8 12:12:29

Inversion on the Riemann sphere

complex.pdf Example 2.6
Let $f: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ be given by $f(z)=\frac1z(z ≠ 0, \infty)$ and $f(0)=\infty, f(\infty)=0$.
One can check that if $S(z)=(t, u, v) \in \mathbb{S}$ then $S(f(z))=(t,-u,-v)$.
That is, under the identification $S: \mathbb{C}_{\infty} \rightarrow \mathbb{S}, f$ corresponds to the (obviously continuous) map $(t, u, v) \mapsto(t,-u,-v)$, that is to say rotation by $\pi$ about the $x$-axis.
QQ图片20220803044150.png

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list