Forgot password?
 Create new account
View 125|Reply 2

Wirtinger derivatives

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-8-10 02:00:11 |Read mode
complex.pdf page 15
Definition 3.10. Let $f: U \rightarrow \mathbb{C}$ be a function with components $(u, v)$, and suppose that the partial derivatives of these exist. Then we define the Wirtinger (partial) derivatives by$$\partial_{z} f:=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right) u+i \frac{1}{2}\left(\partial_{x}-i \partial_{y}\right) v$$and$$\partial_{\bar{z}} f:=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) u+i \frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) v$$Lemma 3.11. Let $U$ be an open subset of $\mathbb{C}$ and let $f: U \rightarrow \mathbb{C}$. Then $f$ satisfies the Cauchy-Riemann equations if and only if $\partial_{\bar{z}} f=0$.
Proof.\begin{aligned}\partial_{\bar{z}} f&=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) u+i \frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) v\\&=\frac{1}{2}\left(\partial_{x}u-\partial_{y}v\right) +i \frac{1}{2}\left(\partial_{y}u+\partial_{x}v\right) \\&=0+0i\end{aligned}
Untitled.png

Basic properties$${\partial\over\partial z_i}z_i={\partial\over\partial \bar z_i}\bar z_i=1$$Linearity: For $f,g\in C^{1}(\Omega ),$\begin{aligned}{\frac {\partial }{\partial z_{i}}}\left(\alpha f+\beta g\right)&=\alpha {\frac {\partial f}{\partial z_{i}}}+\beta {\frac {\partial g}{\partial z_{i}}}\\{\frac {\partial }{\partial {\bar {z}}_{i}}}\left(\alpha f+\beta g\right)&=\alpha {\frac {\partial f}{\partial {\bar {z}}_{i}}}+\beta {\frac {\partial g}{\partial {\bar {z}}_{i}}}\end{aligned}Product rule: For $f,g\in C^{1}(\Omega ),$\begin{aligned}{\frac {\partial }{\partial z_{i}}}(f\cdot g)&={\frac {\partial f}{\partial z_{i}}}\cdot g+f\cdot {\frac {\partial g}{\partial z_{i}}}\\{\frac {\partial }{\partial {\bar {z}}_{i}}}(f\cdot g)&={\frac {\partial f}{\partial {\bar {z}}_{i}}}\cdot g+f\cdot {\frac {\partial g}{\partial {\bar {z}}_{i}}}\end{aligned}Chain rule: For $f,g\in C^{1}(\Omega ),g(\Omega)\subset\Omega,$\begin{aligned}{\frac {\partial }{\partial z}}(f\circ g)&=\left({\frac {\partial f}{\partial z}}\circ g\right){\frac {\partial g}{\partial z}}+\left({\frac {\partial f}{\partial {\bar {z}}}}\circ g\right){\frac {\partial {\bar {g}}}{\partial z}}\\{\frac {\partial }{\partial {\bar {z}}}}(f\circ g)&=\left({\frac {\partial f}{\partial z}}\circ g\right){\frac {\partial g}{\partial {\bar {z}}}}+\left({\frac {\partial f}{\partial {\bar {z}}}}\circ g\right){\frac {\partial {\bar {g}}}{\partial {\bar {z}}}}\end{aligned}

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-8-10 02:38:12
3dcomplexnumbers.net
$$4 \cdot \frac{d f}{d z} \cdot \frac{d f}{d \bar{z}}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f=\Delta f$$Wirtinger derivatives and the factorization of the Laplacian.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-2 07:32:15
en.wikipedia.org/wiki/Antiholomorphic_function
A function of the complex variable $z$ defined on an open set in the complex plane is said to be antiholomorphic if its derivative with respect to $\bar z$ exists in the neighbourhood of each and every point in that set, where $\bar z$ is the complex conjugate.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list