Forgot password
 Register account
View 174|Reply 2

[函数] 题干很简短 但是过程很曲折 给我导迷糊了

[Copy link]

107

Threads

224

Posts

1

Reputation

Show all posts

facebooker posted 2022-8-14 02:26 |Read mode
已知$f(x)=\dfrac{\ln (1+x)}{x}, g(x)=f(x)+f(\frac{1}{x})$,求$g(x)$的最大值。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-8-14 02:41
`f(x)=\ln(1+x)^{1/x}`,于是
\[f(x)+f\left( \frac1x \right)=\ln\left( (1+x)^{1/x}\left( 1+\frac1x \right)^x \right),\]
所以变成求 `(1+x)^{1/x}(1+1/x)^x` 的最大值。

根据这帖:forum.php?mod=viewthread&tid=4465,有更强结论:
\[(1+x)^{1/x}+\left( 1+\frac1x \right)^x\leqslant4,\]
根此再由均值有
\[(1+x)^{1/x}\left( 1+\frac1x \right)^x\leqslant\frac14\left( (1+x)^{1/x}+\left( 1+\frac1x \right)^x \right)^2\leqslant4,\]
当 `x=1` 时取等,所以原题最大值就是 `\ln4`。

107

Threads

224

Posts

1

Reputation

Show all posts

original poster facebooker posted 2022-8-14 04:01
kuing 发表于 2022-8-14 02:41
`f(x)=\ln(1+x)^{1/x}`,于是
\[f(x)+f\left( \frac1x \right)=\ln\left( (1+x)^{1/x}\left( 1+\frac1x \ri ...
原来如此 居然是一道以前研究过的题目 惭愧惭愧。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:11 GMT+8

Powered by Discuz!

Processed in 0.011620 seconds, 22 queries