Forgot password?
 Create new account
View 2334|Reply 2

[不等式] a+b+c=9,ab+bc+ca=24,求b的取值范围.

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-11-19 11:30:17 |Read mode
实数a,b,c,满足如下条件$a+b+c=9,ab+bc+ca=24$,求b的取值范围.
blog.sina.com.cn/s/blog_68ef13230101esqq.html

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-11-19 11:43:11
Last edited by realnumber at 2013-11-19 11:50:001楼连接中区分巧合还是必然,读着感觉很好.
三次.JPG
a,b,c看作3次方程$(x-a)(x-b)(x-c)=0$的三个根,即得$x^3-9x^2+24x-abc=0$
记$f(x)=x^3-9x^2+24x$,如图,可得要使得方程有3个实数根,则$f(4)=16\le f(x)\le f(2)=20$,
而当$x^3-9x^2+24x=16或20$,分别解得最小最大的根是1,5,即$1\le a,b,c\le 5$

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-20 21:24:53
这里就不用判别式法了
(还可以利用韦达定理构造二次方程来做,例如这里:blog.sina.com.cn/s/blog_64e168d30101r9bw.html
$a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=81-48=33$,
于是,$33=a^2+b^2+c^2\geqslant\dfrac{(a+c)^2}2+b^2=\dfrac{(9-b)^2}2+b^2$,
即$(9-b)^2+2b^2-66\leqslant0$,
整理得,$b^2-6b-5\leqslant0$,于是$1\leqslant b\leqslant5$.
同理,$1\leqslant a\leqslant5$,$1\leqslant c\leqslant5$。
妙不可言,不明其妙,不着一字,各释其妙!

手机版Mobile version|Leisure Math Forum

2025-4-21 19:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list