找回密码
 快速注册
搜索
查看: 54|回复: 2

Liouville’s theorem

[复制链接]

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65396
QQ

显示全部楼层

hbghlyj 发表于 2022-9-11 09:06 |阅读模式
本帖最后由 hbghlyj 于 2022-9-11 12:01 编辑 en.Wikipedia.org
zh.Wikipedia.org
planetmath.org

complex.pdf page46

Theorem 7.13. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. If $f$ is bounded then it is constant.
Proof. Suppose that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Let $\gamma_R(t)=R e^{2 \pi i t}$ be the circular path centred at the origin with radius $R$. Then for $R>|w|$ the integral formula shows
\[
\begin{aligned}
|f(w)-f(0)| &=\left|\frac{1}{2 \pi i} \int_{\gamma_R} f(z)\left(\frac{1}{z-w}-\frac{1}{z}\right) d z\right| \\
&=\frac{1}{2 \pi}\left|\int_{\gamma_R} \frac{w \cdot f(z)}{z(z-w)} d z\right| \\
& \leq \frac{2 \pi R}{2 \pi} \sup _{z:|z|=R}\left|\frac{w \cdot f(z)}{z(z-w)}\right| \\
& \leq R \cdot \frac{M|w|}{R \cdot(R-|w|)}=\frac{M|w|}{R-|w|}
\end{aligned}
\]
Thus letting $R \rightarrow \infty$ we see that $|f(w)-f(0)|=0$, so that $f$ is constant as required.

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65396
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-9-11 09:55
Theorem 7.14. Suppose that $p(z)=\sum_{k=0}^n a_k z^k$ is a non-constant polynomial where $a_k \in \mathbb{C}$ and $a_n \neq 0$. Then there is a $z_0 \in \mathbb{C}$ for which $p\left(z_0\right)=0$.

Proof. By rescaling $p$ we may assume that $a_n=1$. If $p(z) \neq 0$ for all $z \in \mathbb{C}$ it follows that $f(z)=1 / p(z)$ is an entire function (since $p$ is clearly entire). We claim that $f$ is bounded. Indeed since it is continuous it is bounded on any disc $\bar{B}(0, R)$, so it suffices to show that $|f(z)| \rightarrow 0$ as $z \rightarrow \infty$, that is, to show that $|p(z)| \rightarrow \infty$ as $z \rightarrow \infty$. But we have
\[
|p(z)|=\left|z^n+\sum_{k=0}^{n-1} a_k z^k\right|=\left|z^n\right|\left|1+\sum_{k=0}^{n-1} \frac{a_k}{z^{n-k}}\right|\geq\left|z^n\right| \cdot\left(1-\sum_{k=0}^{n-1} \frac{\left|a_k\right|}{|z|^{n-k}}\right) .
\]
Since $\frac{1}{|z|^m} \rightarrow 0$ as $|z| \rightarrow \infty$ for any $m \geq 1$ it follows that for sufficiently large $|z|$, say $|z| \geq R$, we will have $1-\sum_{k=0}^{n-1} \frac{\left|a_k\right|}{|z|^{n-k}} \geq 1 / 2$. Thus for $|z| \geq R$ we have $|p(z)| \geq \frac{1}{2}|z|^n$. Since $|z|^n$ clearly tends to infinity as $|z|$ does, it follows $|p(z)| \rightarrow \infty$ as required.   $\square$

Remark 7.15. The crucial point of the above proof is that one term of the polynomial–the leading term in this case–dominates the behaviour of the polynomial for large values of $z$. All proofs of the fundamental theorem hinge on essentially this point. Note that $p(z_0)=0$ if and only if $p(z)=(z-z_0) q(z)$ for a polynomial $q(z)$, thus by induction on degree we see that the theorem implies that a polynomial over $\mathbb{C}$ factors into a product of degree one polynomials.

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65396
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-9-11 20:34
Wikipedia
If $|f(z)| ≤ M|z^n|$ for $|z|$ sufficiently large, then $f$ is a polynomial of degree at most $n$.
This can be proved as follows. Again take the Taylor series representation of $f$
\[f(z) = \sum_{k=0}^\infty a_k z^k.\]
The argument used during the proof using Cauchy estimates shows that for all \(k \ge 0\)
\[|a_k| \leq Mr^{n-k}\]
So, if $k>n$, then
\[|a_k| \leq \lim_{r\to\infty}Mr^{n-k} = 0.\]
Therefore, \(a_k= 0\).

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 16:07

Powered by Discuz!

× 快速回复 返回顶部 返回列表