Forgot password?
 Create new account
View 121|Reply 2

Morera's Theorem

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-9-13 21:06:43 |Read mode
lectures14-Earl.pdf page78
Theorem 232 (Morera's Theorem) Let $f: U \rightarrow \mathbb{C}$ be a continuous function on a domain such that
\[
\int_\gamma f(z) \mathrm{d} z=0
\]
for any closed path $\gamma$. Then $f$ is holomorphic.
Proof Let $z_0 \in U$. As $U$ is open and connected then it is path-connected and so for any $z \in U$ there is a path $\gamma(z)$ connecting $z_0$ to $z$. We will then define
\[
F(z)=\int_{\gamma(z)} f(w) \mathrm{d} w .
\]
Note that if $\gamma_1$ and $\gamma_2$ are two such paths then $\gamma_1 \cup\left(-\gamma_2\right)$ is a closed path and hence by hypothesis
\[
0=\int_{\gamma_1 \gamma_2^{-1}} f(w) \mathrm{d} w=\int_{\gamma_1} f(w) \mathrm{d} w-\int_{\gamma_2} f(w) \mathrm{d} w
\]
and we see that $F(z)$ is well-defined.
Now take $z_0 \in U$ and $r>0$ such that $D\left(z_0, r\right) \subseteq U$ and $h \in D\left(z_0, r\right)$. Then
\[
F\left(z_0+h\right)=F\left(z_0\right)+\int_{\left[z_0, z_0+h\right]} f(w) \mathrm{d} w .
\]
Hence
\[
\begin{aligned}
\left|\frac{F\left(z_0+h\right)-F\left(z_0\right)}{h}-f\left(z_0\right)\right| &=\left|\left(\frac{1}{h} \int_{\left[z_0, z_0+h\right]} f(w) \mathrm{d} w\right)-f\left(z_0\right)\right| \\
&=\left|\frac{1}{h} \int_{\left[z_0, z_0+h\right]}\left(f(w)-f\left(z_0\right)\right) \mathrm{d} w\right| \\
& \leqslant \frac{1}{|h|}|h| \sup _{\left[z_0, z_0+h\right]}\left|f(w)-f\left(z_0\right)\right| \quad \text { [by the Estimation Theorem] } \\
&=\sup _{\left[z_0, z_0+h\right]}\left|f(w)-f\left(z_0\right)\right| \rightarrow 0 \text { as } h \rightarrow 0 \text { by the continuity of } f \text { at } z_0
\end{aligned}
\]
Hence $F$ is holomorphic and $F^{\prime}=f$. By Corollary 225, $f$ is holomorphic.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-9-13 21:10:40
Last edited by hbghlyj at 2023-1-1 20:22:00zh.wikipedia.org/wiki/莫雷拉定理
该定理的逆命题不一定成立。全纯函数在定义域内并不一定有原函数,除非加上更多条件。例如,柯西积分定理说明全纯函数沿着一条闭曲线的路径积分为零,只要函数的定义域是单连通的。

例如,函数$\frac1z$在圆环$\{z:1<\abs z<2\}$中全纯,但没有原函数。
相关帖子: 连续函数在任何闭合路径上积分为0, 则存在原函数

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-14 20:46:19
Last edited by hbghlyj at 2023-5-18 01:37:00连续函数在任何三角形路径上积分为0, 则存在原函数.
连续函数在任何圆路径上积分为0, 则存在原函数. [用Green's theorem] 知乎 | MSE:Prove Morera's Theorem in circles cases.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list