Forgot password?
 Create new account
View 151|Reply 2

如何把球面内外翻转:斯梅尔悖论

[Copy link]

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

hbghlyj Posted at 2022-10-4 05:31:28 |Read mode
A peek inside the mind of a mathematician
The video is about Thurston’s technique for everting a sphere. But the real gems are the little visual techniques (complete with sound effects), so important for this kind of mathematics. Thurston’s video not only makes them accessible, but provides a rare peek into the mind of one of the greatest mathematicians of our time.

zh.wikipedia.org/wiki/斯梅爾悖論
差拓扑结构中,球面外翻(Sphere eversion)是指在三维空间中,將球面從內向外翻。值得注意的是,我們有辦法在不割開、撕裂或製造摺痕的前提下,連續且光滑地將球面由內向外翻(有可能產生自交)。 這對非数学家甚至是瞭解定期同伦的人來說都十分意外,并可以被视为一种真詭論:乍看下是假,實際上為真。

更準確地说,令
\[f\colon S^2\to \mathbb R^3\]
為标准嵌入,則有一个定期同伦的浸入
\[f_t\colon S^2\to \mathbb  R^3\]
使得 $f_0=f$ 且 $f_1=-f$。

無摺痕球面外翻的存在性證明是由史蒂芬·斯梅爾於1957年率先完成。雖然已經有一些電腦動畫幫助人們想像,但很難提供這種翻轉的動畫片。第一个展示性的例子經過數位数学家的努力才完成,包括弗拉基米爾·阿諾爾德和盲人數學家伯纳德·莫兰。另一方面,证明这样的「翻轉」存在容易多了,这就是斯梅尔證明的事。

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-4 05:33:19

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-27 06:59:37
surfaces.gotfork.net/
The first parameterization of Boy's Surface was found by Bernard Morin in 1978 and was used as a half-way model for sphere eversion.

手机版Mobile version|Leisure Math Forum

2025-4-22 01:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list