Forgot password?
 Create new account
View 150|Reply 2

[不等式] 复合函数问题

[Copy link]

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

hbghlyj Posted at 2022-10-21 16:27:05 |Read mode
设$S=\{1,2,\cdots,m\}$, $a$与$b$是从$S$到$\Bbb R$的函数, $f$和$g$是从$S$到$S$的双射, 满足
i) 对任何$n∈S$有$a(n)<b(n)$.
ii) $a∘f$与$b∘g$是严格增的.
求证: 对任何$n∈S$有$a(f(n))<b(g(n))$.


$a(f(1))=\min a(S)<\min b(S)=b(g(1))$
对$n$归纳,假设$a(f(i))<b(g(i))$对任何$i=1,2,\cdots,n$而$a(f(n+1))≥b(g(n+1))$.
因为对任何$i∈S$有$a(i)<b(i)$且$a∘f$和$b∘g$是严格增的,所以
\begin{align*}
a(f(1))<a(f(2))<\cdots<a(f(n))&<b(g(n))\\
&<b(g(n+1))≤a(f(n+1))<a(f(n+2))<\cdots<a(f(m))
\end{align*}
所以$$\{f(1),f(2),\cdots,f(n)\}=\{i∈S:a(i)<b(g(n+1))\}\tag1$$
因为对任何$i∈S$有$a(i)<b(i)$且$b∘g$是严格增的,所以$a(g(i))<b(g(i))≤b(g(n+1))$对任何$i=1,2,\cdots,n+1$成立,所以
$$\{g(1),g(2),\cdots,g(n+1)\}\subseteq\{i∈S:a(i)<b(g(n+1))\}\tag2$$
由(1)与(2)得
$$\{g(1),g(2),\cdots,g(n+1)\}\subseteq\{f(1),f(2),\cdots,f(n)\}$$
左边比右边多1个元素.矛盾.

等价形式:矩阵按行、列排序

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-21 19:53:00
改为$S=\Bbb R$还成立吗

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-23 22:01:09

证法2

对任意$i∈S$,
根据这帖因为$f^{-1}∘g$是双射,存在$j∈S$使$j≤i$且$i≤f^{-1}(g(j))$.
因为$a∘f$严格增且$i≤f^{-1}(g(j))$,所以$a(f(i))≤a(f(f^{-1}(g(j))))$.
因为$a(n)≤b(n)∀n∈S$,所以$a(g(j))≤b(g(j))$.
因为$b∘g$严格增且$j≤i$,所以$b(g(j))≤b(g(i))$.
所以$a(f(i))≤a(f(f^{-1}(g(j))))=a(g(j))≤b(g(j))≤b(g(i))$.
证毕.

手机版Mobile version|Leisure Math Forum

2025-4-21 23:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list