Forgot password?
 Create new account
View 1993|Reply 7

出个题吧,大家帮我找找出处...

[Copy link]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-21 05:57:13 |Read mode
已知函数$f(x)$在$(0,1)$上连续,且满足:
对给定正整数$n$:
\[\int_0^1f(x)x^ndx=1\]
对任意自然数$k, k<n$:
\[\int_0^1f(x)x^kdx=0\]
求证:存在一点$\xi \in (0,1)$,使得
\[\abs{f(\xi)}\ge2^n(n+1)\]

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-11-21 06:52:34
出处貌似是(吉林工业大学)
\[\int\limits_0^1 {{{\left( {x - \frac{1}{2}} \right)}^n}f\left( x \right){\text{d}}x}  < {2^n}\left( {n + 1} \right)\int\limits_0^1 {{{\left| {x - \frac{1}{2}} \right|}^n}{\text{d}}x} \]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

 Author| 战巡 Posted at 2013-11-21 09:22:41
回复 1# 战巡


还是给解答吧...
考虑积分
\[\int_0^1f(x)(x-\frac{1}{2})^ndx\]
\[=\int_0^1f(x)[\sum_{i=0}^nC_n^ix^i(-\frac{1}{2})^{n-i}]dx=1\]
因此有
\[1=\int_0^1f(x)(x-\frac{1}{2})^ndx\le \int_0^1\abs{f(x)(x-\frac{1}{2})^n}dx\]
由于$\abs{f(x)}$和$\abs{(x-\frac{1}{2})^n}$在$(0,1)$上都连续,且$\abs{(x-\frac{1}{2})^n}$在$(0,1)$上不变号,根据积分第一中值定理推论得
存在$\xi \in (0,1)$使得
\[ \int_0^1\abs{f(x)(x-\frac{1}{2})^n}dx=\abs{f(\xi)}\int_0^1\abs{(x-\frac{1}{2})^n}dx=\abs{f(\xi)}\frac{1}{2^n(n+1)}\]
因此有
\[\abs{f(\xi)}\frac{1}{2^n(n+1)}\ge 1\]
\[\abs{f(\xi)}\ge 2^n(n+1)\]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

 Author| 战巡 Posted at 2013-11-21 09:24:45
出处貌似是(吉林工业大学)
\[\int\limits_0^1 {{{\left( {x - \frac{1}{2}} \right)}^n}f\left( x \right ...
icesheep 发表于 2013-11-21 06:52
这个感觉很奇怪啊,右边那块就是1...

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-11-21 09:33:18
这个感觉很奇怪啊,右边那块就是1...
战巡 发表于 2013-11-21 09:24
反证法,1<1 导出矛盾。

0

Threads

15

Posts

80

Credits

Credits
80

Show all posts

LLLYSL Posted at 2014-7-1 07:54:51
北京大学生数学竞赛在很早以前也出过这个题目

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-4-28 23:22:41
回复 1# 战巡
最早应该出自于1972年12月2日举行的“第33届普特南数学竞赛”
参考来源:
《美国大学生数学竞赛题解(下册)》
卢亭鹤 张永祺 邵存蓓  译
甘肃人民出版社

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

 Author| 战巡 Posted at 2019-5-1 01:19:53
这是谁家的洛阳铲{:curse:}

手机版Mobile version|Leisure Math Forum

2025-4-20 22:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list