Forgot password?
 Create new account
View 98|Reply 3

连续线性函数在单位球面恒为正,则下确界为正

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-11-2 04:59:09 |Read mode
Last edited by hbghlyj at 2022-11-13 14:45:00A2-metricspaces.pdf Lemma 2.2.1说明:
Let $f : V → W$ be a linear map between normed vector spaces. Then
1) $f$在0连续, 则$\{‖f (x)‖ : ‖x‖≤r\}$有界, 对任何$r>0$.
2) 若存在$r$使$\{‖f (x)‖ : ‖x‖=r\}$有界, 则$f$在$V$上一致连续.
又见Bounded operator
我想问一个问题:
Let $f : V → ℝ$ be a continous linear map between normed vector spaces. By the above, $\inf f(S)$ exists.
If $f>0$ for all $S=\{x∈V:‖x‖=1\}$, then $\inf f(S)>0$.
这个正确吗? (Note that $S$ is not necessarily compact)

Comment

f>0 啥意思,值域都不是 R 啊  Posted at 2022-11-13 21:43

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-13 21:47:07
f>0 啥意思,值域都不是 R 啊  发表于 2022-11-13 14:43
哦对! 是我打错了. 已修改

Comment

此处 f(S)>0 和线性性是矛盾的, 因为 f(-x)=-f(x). 对线性空间间的线性映射而言, 在某点连续等价于一致连续, 等价于范数有界, 等价于 0 的原像是闭集.  Posted at 2022-12-4 17:22

手机版Mobile version|Leisure Math Forum

2025-4-21 19:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list