Forgot password?
 Register account
View 301|Reply 6

[几何] 双曲线过同心圆与两条直线的交点且以另两条直线为渐近线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-11-5 09:26 |Read mode
两个同心圆与一直线交于A,B和E,F, 与另一直线交于C,D和G,H, 则存在一个双曲线, 以AC,BD为渐近线, 且经过E,F,G,H.
2102221106f1ef76c161d90c67.png 2102221054317a22ddbf7bd31a.png

相关帖子

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2022-11-5 14:08 From mobile phone
总觉得这图见过,但一时不知道搜什么才找得出来

Comment

建议论坛添加图片搜索?  Posted 2022-11-5 16:02

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-5 17:17
转化为: 设$AC,BD$交于$K$, 过$E,G$作$AC,BD$平行线交于$I,J$, 则$I,J,K$共线.

由圆幂有$AE·BE=CG·DG$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-5 17:28
$$\frac{S_1}{S_2}=\frac{\S{ABK}}{\S{CDK}}\cdot\frac{1-\frac{AE^2+BE^2}{AB^2}}{1-\frac{CG^2+DG^2}{CD^2}}=\frac{AB^2}{CD^2}\cdot\frac{1-\frac{AE^2+BE^2}{AB^2}}{1-\frac{CG^2+DG^2}{CD^2}}=\frac{AE\cdot BE}{CG\cdot DG}=1$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-11-5 20:12
原来就是 1#“相关帖子”里的图,原先那帖的 7# 你自删了,图就在那里。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-5 21:23
kuing 发表于 2022-11-5 13:12
原来就是 1#“相关帖子”里的图,原先那帖的 7# 你自删了,图就在那里。
是的. 我觉得分成两个帖子, 更清晰一些.

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit