找回密码
 快速注册
搜索
查看: 18|回复: 1

解线性方程组的迭代法

[复制链接]

3148

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65362
QQ

显示全部楼层

hbghlyj 发表于 2022-11-9 05:15 |阅读模式
知乎
考虑求解线性方程组$\boldsymbol{Ax}=\boldsymbol{b}$,其中$\boldsymbol{A}\in \mathbb{R}^{n\times n}$非奇异。将方程组化为$\boldsymbol{x}=\boldsymbol{Hx}+\boldsymbol{g}$的等价形式,并构造一个收敛到解的迭代序列:$\boldsymbol{x}^{\left( k+1 \right)}=\boldsymbol{Hx}^{\left( k \right)}+\boldsymbol{g}$,其中$\left\{ \boldsymbol{x}^{\left( \boldsymbol{k} \right)} \right\}$为迭代序列,$\boldsymbol{H}$为迭代矩阵。

通过证明可以得到:对于任意初值序列,当$k\rightarrow \infty$时,如果$\left\{ \boldsymbol{x}^{\left( \boldsymbol{k} \right)} \right\}$有唯一极限$\boldsymbol{x*}\in \mathbb{R}^{n\times n}$,则称$\boldsymbol{H}$为收敛矩阵,且此时$\boldsymbol{x*}$恰为线性方程组$\boldsymbol{Ax}=\boldsymbol{b}$的解。这便是迭代法求解的基本思想,即构造收敛的迭代序列来逼近方程组近似的解。

显然,迭代解法的收敛性以及误差估计的问题至关重要,因为这决定了收敛法是否有效。本文给出相关的基本结论:

迭代矩阵$\boldsymbol{H}$为收敛矩阵,当且仅当$\boldsymbol{H}$的谱半径$\rho \left( \boldsymbol{H} \right) <1$。

对于任意选取初值$\boldsymbol{x}^{\left( 0 \right)}$,只要迭代矩阵的谱半径小于1,或者进一步矩阵某一相容范数小于1,则迭代法收敛。不难想象,迭代法的收敛速度也可以由谱半径来刻画,$x^{\left( k \right)}\rightarrow x*$的速度由$\left( \rho \left( H \right) \right) ^k\rightarrow 0$的速度决定。

Invariants of Linear Transformation
Examples:
Let $A$ be a square matrix. Prove that
\[\limsup_{k\to\infty}|\operatorname{Tr}(A k )|^{1/k}\]
Let $\lambda_1,\cdots,\lambda_n$ be eigenvalues of $A$, $\operatorname{Tr}(A^k)=\sum_{i=1}^n\lambda_j^k$, $\limsup_{k\to\infty}|\sum_{j=1}^n\lambda_j^k|^{1/k}=\max_{1\le j\le n}|\lambda_j|$.
exists.

3148

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65362
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-11-9 05:22
Power sequence
The spectral radius is closely related to the behavior of the convergence of the power sequence of a matrix; namely as shown by the following theorem.
Theorem. Let $A ∈ ℂ^{n×n}$ with spectral radius $ρ(A)$. Then $ρ(A) < 1$ if and only if\[\lim_{k \to \infty} A^k = 0.\]
On the other hand, if $ρ(A) > 1$, $\lim_{k \to \infty} \|A^k\| = \infty$. The statement holds for any choice of matrix norm on $ℂ^{n×n}$.
Proof
Assume that \(A^k\) goes to zero as \(k\) goes to infinity. We will show that $ρ(A) < 1$. Let $(\mathbf v,λ)$ be an eigenvector-eigenvalue pair for $A$. Since $A^k 𝐯=λ^k 𝐯$, we have
\begin{align*}
  0 &= \left(\lim_{k \to \infty} A^k \right) \mathbf{v} \\
    &= \lim_{k \to \infty} \left(A^k\mathbf{v} \right ) \\
    &= \lim_{k \to \infty} \lambda^k\mathbf{v} \\
    &= \mathbf{v} \lim_{k \to \infty} \lambda^k
\end{align*}Since $𝐯 ≠ 0$ by hypothesis, we must have
\[\lim_{k \to \infty}\lambda^k = 0,\]which implies $|λ| < 1$. Since this must be true for any eigenvalue λ, we can conclude that $ρ(A) < 1$.

Now, assume the radius of $A$ is less than $1$. From the Jordan normal form theorem, we know that for all $A∈ ℂ^{n×n}$, there exist $V,J ∈ ℂ^{n×n}$ with $V$ non-singular and $J$ block diagonal such that:
\[A = VJV^{-1}\]with
\[J=\begin{bmatrix}
J_{m_1}(\lambda_1) & 0 & 0 & \cdots & 0 \\
0 & J_{m_2}(\lambda_2) & 0 & \cdots & 0 \\
\vdots & \cdots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_{m_{s-1}}(\lambda_{s-1}) & 0 \\
0 & \cdots & \cdots & 0 & J_{m_s}(\lambda_s)
\end{bmatrix}\]where
\[J_{m_i}(\lambda_i)=\begin{bmatrix}
\lambda_i & 1 & 0 & \cdots & 0 \\
0 & \lambda_i & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_i & 1 \\
0 & 0 & \cdots & 0 & \lambda_i
\end{bmatrix}\in \mathbf{C}^{m_i \times m_i}, 1\leq i\leq s.\]It is easy to see that
\[A^k=VJ^kV^{-1}\]and, since $J$ is block-diagonal,
\[J^k=\begin{bmatrix}
J_{m_1}^k(\lambda_1) & 0 & 0 & \cdots & 0 \\
0 & J_{m_2}^k(\lambda_2) & 0 & \cdots & 0 \\
\vdots & \cdots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_{m_{s-1}}^k(\lambda_{s-1}) & 0 \\
0 & \cdots & \cdots & 0 & J_{m_s}^k(\lambda_s)
\end{bmatrix}\]Now, a standard result on the $k$-power of an \(m_i \times m_i\) Jordan block states that, for \(k \geq m_i-1\):
\[J_{m_i}^k(\lambda_i)=\begin{bmatrix}
\lambda_i^k & {k \choose 1}\lambda_i^{k-1} & {k \choose 2}\lambda_i^{k-2} & \cdots & {k \choose m_i-1}\lambda_i^{k-m_i+1} \\
0 & \lambda_i^k & {k \choose 1}\lambda_i^{k-1} & \cdots & {k \choose m_i-2}\lambda_i^{k-m_i+2} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_i^k & {k \choose 1}\lambda_i^{k-1} \\
0 & 0 & \cdots & 0 & \lambda_i^k
\end{bmatrix}\]Thus, if \(\rho(A) < 1\) then for all $i$, \(|\lambda_i| < 1\). Hence for all $i$ we have:
\[\lim_{k \to \infty}J_{m_i}^k=0\]which implies
\[\lim_{k \to \infty} J^k = 0.\]Therefore,
\[\lim_{k \to \infty}A^k=\lim_{k \to \infty}VJ^kV^{-1}=V \left (\lim_{k \to \infty}J^k \right )V^{-1}=0\]On the other side, if \(\rho(A)>1\), there is at least one element in $J$ that does not remain bounded as $k$ increases, thereby proving the second part of the statement.

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-5 00:02

Powered by Discuz!

× 快速回复 返回顶部 返回列表