Forgot password?
 Create new account
View 119|Reply 2

用$\|C\|<1$判断$1\pm C$可逆

[Copy link]

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

hbghlyj Posted at 2022-10-26 05:03:02 |Read mode
en.wikipedia.org/wiki/Neumann_series
Suppose that $T$ is a bounded linear operator on the normed vector space $X$. If the Neumann series converges in the operator norm, then $\text{Id}-T$ is invertible and its inverse is the series:$$(\mathrm {Id} -T)^{-1}=\sum _{k=0}^{\infty }T^{k}$$
例子:
考虑三阶实矩阵
\[C=\begin{pmatrix}0&{\frac {1}{2}}&{\frac {1}{4}}\\{\frac {5}{7}}&0&{\frac {1}{7}}\\{\frac {3}{10}}&{\frac {3}{5}}&0\end{pmatrix}\]
我们需要证明 $C$ 的某个范数小于1。 因此,我们计算行和范数:
\[\max _{i}\sum _{j}|c_{ij}|=\max \left\lbrace {\frac {3}{4}},{\frac {6}{7}},{\frac {9}{10}}\right\rbrace ={\frac {9}{10}}<1.\]
因此,我们从上面的定理知道 $(I\pm C)^{-1}$ 存在。

Related threads

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-26 05:08:07
$(1-C)^{-1}$存在,则$(1-C^n)^{-1}$存在,这个对吗{:shock:}

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-10-31 18:55:37
hbghlyj 发表于 2022-10-26 05:08
$(1-C)^{-1}$存在,则$(1-C^n)^{-1}$存在,这个对吗{:shock:}
$\color{grey}{C-I=:}A$ 是可逆矩阵, 则 $(A+I)^n-I$ 是否可逆? 即便 $A$ 没有零特征值, $(A+I)^n-I$ 总有可能会有吧. 举个例子:

$[1-(-1)]^{-1}$ 存在, $(1-(-1)^2)^{-1}$ 显然不存在.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

手机版Mobile version|Leisure Math Forum

2025-4-21 23:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list