|
本帖最后由 hbghlyj 于 2023-1-12 21:08 编辑 Real canonical form, Jason Murphy
Suppose $M$ is a real $n \times n$ matrix with real eigenvalues $\left\{\mu_1, \ldots, \mu_a\right\}$ and complex eigenvalues $\left\{\lambda_1, \overline{\lambda_1}, \ldots, \lambda_b, \overline{\lambda_b}\right\}$. Let $\mathcal{B}$ be a basis of generalized eigenvectors of $M$ that puts $M$ into Jordan canonical form. In particular, we can write
\[
\mathcal{B}=\left\{v_j^{\ell}: \begin{array}{c}
j=1, \ldots, a \\
\ell=1, \ldots \ell_j
\end{array}\right\} \cup\left\{w_j^k: \begin{array}{c}
j=1, \ldots, b \\
k=1, \ldots k_j
\end{array}\right\} \cup\left\{\overline{w_j^k}: \begin{array}{l}
j=1, \ldots, b \\
k=1, \ldots k_j
\end{array}\right\},
\]
where the $v_j^{\ell}$ are real, $\ell_j$ is the dimension of the generalized eigenspace for $\mu_j$, and $k_j$ is the dimension of the generalized eigenspace for $\lambda_j$ (so that $\sum_{j=1}^a \ell_j+2 \sum_{j=1}^b k_j=n$ ).
In particular, we have
(1) $\quad M w_j^1=\lambda_j w_j^1, \quad M w_j^{k+1}=\lambda_j w_j^{k+1}+w_j^k \quad$ for $\quad k=1, \ldots, k_j-1$.
Arranging the elements of $\mathcal{B}$ into the columns of a matrix $S$ (in the order suggested above), we can write $M=S J S^{-1}$, where $J$ is the usual block diagonal Jordan form of $M$. We wish to find a real-valued substitute for the standard Jordan normal form.
Let $y_j^k=\operatorname{Re} w_j^k$ and $z_j^k=\operatorname{Im} w_j^k$ for $j=1, \ldots, b$ and $k=1, \ldots, k_j$. Note that
\[
\tilde{\mathcal{B}}=\left\{v_j^{\ell}: \begin{array}{c}
j=1, \ldots, a \\
\ell=1, \ldots \ell_j
\end{array}\right\} \cup\left\{\left(y_j^k, z_j^k\right): \begin{array}{l}
j=1, \ldots, b \\
k=1, \ldots k_j
\end{array}\right\}
\]
forms a basis for $\mathbb{R}^n$. We now arrange the elements of $\tilde{\mathcal{B}}$ into the columns of a matrix $T$ (in the order suggested above) and define $\tilde{J}$ via $M=T \tilde{J} T^{-1}$. Starting from the top left corner of $\tilde{J}$, there will be $a$ Jordan blocks corresponding to the real eigenvalues identical to those appearing in $J$.
We now claim that in fact $\tilde{J}$ is also block diagonal, with $b$ more blocks of a particular form. To see this, we will use (1) to see what relations the $\left(y_j^k, z_j^k\right)$ satisfy. Forgetting the subscripts and superscripts for a moment, we are examining relations of the form
\[
M w=\lambda w+w_0,
\]
with $w_0$ possibly equal to zero. Writing $y=\operatorname{Re} w, z=\operatorname{Im} w, y_0=\operatorname{Re} w_0, z_0=\operatorname{Im} w_0$, we deduce
\[
M y=(\operatorname{Re} \lambda) y-(\operatorname{Im} \lambda) z+y_0, \quad M z=(\operatorname{Im} \lambda) y+(\operatorname{Re} \lambda) z+z_0 .
\]
Using this, one can see that the remaining portion of $\tilde{J}$ will indeed be block diagonal. There will be one block $B_j$ corresponding to each pair $\left(\lambda_j, \overline{\lambda_j}\right)$ of size $2 k_j \times 2 k_j$ of the following form: defining
\[
\Lambda_j:=\left(\begin{array}{cc}
\operatorname{Re} \lambda_j & \operatorname{Im} \lambda_j \\
-\operatorname{Im} \lambda_j & \operatorname{Re} \lambda_j
\end{array}\right), \quad I_2=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right),
\]
the block $B_j$ will look just like a standard Jordan block with $k_j$ entries along the diagonal, except with each $\lambda_j$ replaced by $\Lambda_j$ and each 1 replaced by $I_2$ (so that the block is of size $2 k_j \times 2 k_j$ ). |
|