|
original poster
hbghlyj
posted 2022-12-28 21:28
By Argument principle, for $f,g\in H(G)$, we have$$\oint_\gamma g(z)\frac{f'(z)}{f(z)}~\mathrm dz=\sum_kg(z_k)n(\gamma,z_k)$$
Let $g(z)=\frac1{z^m}$, we get\[\frac{1}{2\pi i}\int_{\gamma(a;r)}\frac{f'\left(z\right)}{f\left(z\right)z^m}dz=\sum_k\frac1{z_k^m}\] |
|