Forgot password?
 Create new account
View 106|Reply 1

counting zeros (Rouché's theorem)

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-11-20 08:21:08 |Read mode
H. Priestley Complex Analysis Exercise 18.10
Let $f$ be holomorphic inside and on $\gamma(a;r)$ and assume that $f(z)\ne0$ for $z\in\gamma(a;r)^*$. Find, in terms of the zeros of $f$,
\[\frac{1}{2\pi i}\int _{\gamma \left(a;r\right)}\frac{f'\left(z\right)}{f\left(z\right)z^m}dz\]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-28 21:28:14
By Argument principle, for $f,g\in H(G)$, we have$$\oint_\gamma g(z)\frac{f'(z)}{f(z)}~\mathrm dz=\sum_kg(z_k)n(\gamma,z_k)$$
Let $g(z)=\frac1{z^m}$, we get\[\frac{1}{2\pi i}\int_{\gamma(a;r)}\frac{f'\left(z\right)}{f\left(z\right)z^m}dz=\sum_k\frac1{z_k^m}\]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list