Forgot password?
 Create new account
View 199|Reply 11

sin,cos的k次幂和 与Wallis' integrals

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-11-25 06:43:37 |Read mode
Last edited by hbghlyj at 2024-4-14 18:30:00$k,n$为正整数. 当 $k<n$ 时,
$$\sum_{j=0}^{n-1}\sin^k\left(\frac{\tau+2\pi j}n\right),\qquad \sum_{j=0}^{n-1}\cos^k\left(\frac{\tau+2\pi j}n\right)$$
与 $\tau$ 无关, 恒等于
$$\frac{n}{2\pi}\int_{0}^{2\pi}\sin^k(x)\,dx,\qquad \frac{n}{2\pi}\int_{0}^{2\pi}\cos^k(x)\,dx.$$


设$f(x)=\sin(x),\cos(x)$. 它们可以统一证明:设
\[a_n=\sum_{j=0}^{n-1}f\left(\frac{\tau+2\pi j}n\right)^k\]
\[z=e^{ix}\]
\[F(z) =\frac{ n z^{n-1}}{z^n-e^{i\tau}}f(x)^k\]
\[\zeta_j=\exp\left(i\frac{\tau+2\pi j}n\right)\]
因为$F(z)$在 $\zeta_j$ 的留数为 $f\left(\frac{\tau+2\pi j}n\right)^k$,
\[a_n=\sum_{j=0}^{n-1}\operatorname{Res}\left(F(z) , \zeta_j\right)\]
$F(z)$在$\Bbb C_\infty$上的留数之和为0 (见这里), 因此
\[
a_n =  -\operatorname{Res}\left(F(z) , 0 \right) - \text{Res}\left(F(z) , \infty\right)   \\
\]
用 $d(\frac1z)=-\frac1{z^2}dz$ 将 $\infty$ 处的留数转换为 $0$ 处的留数
\begin{equation}\label1
a_n =- \operatorname{Res}\left(F(z) , 0\right) + \text{Res}\left(z^{-2} F(z^{-1}) , 0 \right)
\end{equation}
代入 $F(z)$
\[
a_n= -\text{Res}\left(\frac{nz^{n-1}}{z^n-e^{i\tau}} f(x)^k , 0\right) + \text{Res}\left( z^{-2}F(z^{-1}) , 0 \right)
\]
$f(x)=O(z^{-1})\implies f(x)^k=O(z^{-k})$,而$\frac{nz^{n-1}}{z^n-e^{i\tau}}=O(z^{n-1})$,当 $k<n$ 时 $-k+n-1>-1$,右端第一个留数为0.
同理,因为$z^{-2} F(z^{-1})=\frac{nz^{-n-1}}{z^{-n}-e^{i\tau}} f(-x)^k=\left(nz^{-1}+O(z^{n-1})\right) f(-x)^k$,
$f(-x)=O(z^{-1})$,可去掉第二个留数中的$O(z^{n-1})$,故
\begin{align*}a_n&=\operatorname{Res}\left( \frac{n}{z} f(x)^k  , 0 \right)\\
&=\frac{n}{2\pi i}\oint_{|z|=1}\frac{1}{z} f(-x)^kdz\\z=e^{ix}&\implies dz=iz\,dx\\
&=\frac{n}{2\pi}\int_{0}^{2\pi}f(-x)^k\,dx
\end{align*}
因为$f(x)=\sin(x),\cos(x)$满足$f(-x)=\pm f(x)$,
\[
a_n=(\pm1)^k\frac{n}{2\pi}\int_{0}^{2\pi}f(x)^k\,dx
\]
此处$(\pm1)^k$可略去,因为$k$为奇数时$a_n=0$,$k$为偶数时$(-1)^k=1$.
\[
a_n=\frac{n}{2\pi}\int_{0}^{2\pi}f(x)^k\,dx
\]

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2022-11-26 02:35:04

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-26 11:06:18
1#中的条件$k<n$是必要的. 下面的例子表明当$k=n$时, 命题不成立.
In[]:= With[{n=6,k=6},Sum[Sin[2Pi j/n]^k,{j,0,n-1}]-n/(2Pi) Integrate[Sin[t]^k,{t,0,2Pi}]]//N
Out[]= -0.1875

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2022-11-26 12:30:51
这个解法很高端呀!
如何转化,才得出kuing.cjhb.site/forum.php?mod=viewthread& … 2&extra=page%3D1
的6#的结论?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-26 19:11:15
Last edited by hbghlyj at 2024-4-14 18:31:00
lemondian 发表于 2022-11-26 05:30
这个解法很高端呀!
如何转化,才得出https://kuing.cjhb.site/forum.php?mod=viewthread&tid=5332 ...
不高端啊
例如 $k=2l$,
$f(x)^k = \left( \frac{z - \frac{1}{z}}{2i} \right)^k=\frac{(-1)^l}{2^k}(z-{1\over z})^{2l}$
$(z-{1\over z})^{2l}$ 的常数项为 $(-1)^l{2l\choose l}$ (和这帖9#一样)
\eqref{1}变为$$a_n=n\cdot\frac{(-1)^l}{2^k}\cdot(-1)^l{2l\choose l}=\frac n{2^k}{2l\choose l}$$
得到和这帖6#一样的结论

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-14 23:56:42
这帖的回答中,给出了 sin,cos的k次幂和的结论,但没写出证明,可能因为是熟知的

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-15 00:04:25
1#的证明用到sin的性质很少,所以命题可以推广:
$k,n$为正整数,$k<n$
函数$G(z)$在$|z|\le1$全纯,
且当$z\to0$时,$G(z)=O(z^{-1})$,$G(z^{-1})=O(z^{-1})$,则
$$\sum_{j=0}^{n-1}g\left(\frac{\tau+2\pi j}n\right)^k=\frac{n}{2\pi}\int_{0}^{2\pi}g(-x)^k\,dx$$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-15 00:58:16
hbghlyj 发表于 2024-4-14 16:04
1#的证明用到sin的性质很少,所以命题可以推广:
后来发现这个“推广”和原命题差不多
设$G(z)=\sum_{j=-\infty}^\infty a_jz^j$
当$z\to0$时,$G(z)=O(z^{-1})\implies\forall j\lt-1:a_j=0$
当$z\to0$时,$G(z^{-1})=O(z^{-1})\implies\forall j\gt1:a_j=0$
所以$G(z)=a_{-1}z^{-1}+a_0+a_1z$
所以$g(x)$是$1,\sin(x),\cos(x)$的线性组合

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-15 02:32:47
1#仅处理了$k<n$.
一般的$k$,可以展开\eqref{1}式继续算,下面取$f(x)=\cos(x)$计算一般式:

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-15 02:59:24
设$f(x)=\cos(x)=\frac{z+z^{-1}}2$,则
$$F(z)=\frac{ n z^{n-1}}{z^n-e^{i\tau}}\left(\frac{z+z^{-1}}2\right)^k=-\left(\sum _{j\geq 1}  n e^{-i j \tau } z^{j n-1} \right)2^{-k}\sum _{t=0}^k \binom{k}{t} z^{k-2 t}$$
令$jn-1+k-2t=-1$,即$2t=k+jn$,
代入$0\le t\le k$得$jn\le k$
提取$z^{-1}$项系数,
\[
\operatorname{Res}\left(F(z) , 0\right)=-\sum_{\substack{1\le j\le\frac kn\\2\mid k+jn}}n e^{-i j \tau } 2^{-k} \binom{k}{\frac{k+jn}2}
\]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-15 03:05:27
$$z^{-2}F(z^{-1})=\frac{ n z^{-n-1}}{z^{-n}-e^{i\tau}}\left(\frac{z+z^{-1}}2\right)^k=\left(\sum _{j\geq 0}  n e^{i j \tau } z^{j n-1} \right)2^{-k}\sum _{t=0}^k \binom{k}{t} z^{k-2 t}$$
令$jn-1+k-2t=-1$,即$2t=k+jn$,
代入$0\le t\le k$得$jn\le k$
提取$z^{-1}$项系数,
\[
\operatorname{Res}\left(z^{-2}F(z^{-1}) , 0\right)=\sum_{\substack{0\le j\le\frac kn\\2\mid k+jn}}n e^{i j \tau } 2^{-k} \binom{k}{\frac{k+jn}2}
\]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-15 03:32:09
把上面两式代入\eqref{1},
\[a_n=\sum_{\substack{1\le j\le\frac kn\\2\mid k+jn}}n e^{-i j \tau } 2^{-k} \binom{k}{\frac{k+jn}2}+\sum_{\substack{0\le j\le\frac kn\\2\mid k+jn}}n e^{i j \tau } 2^{-k} \binom{k}{\frac{k+jn}2}\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list