Forgot password
 Register account
View 155|Reply 0

[组合] 用binomial transform计算错排数

[Copy link]

3222

Threads

7841

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-11-25 07:35 |Read mode
一個序列 $\{a_{n}\}$ 的二項式變換(binomial transform)是序列 $\{s_{n}\}$:
\begin{equation}\label1s_{n}=\sum _{k=0}^{n}(-1)^{k}{n \choose k}a_{k}.\end{equation}
再次应用binomial transform就获得原序列, 称为二项式反演:\begin{equation}\label2a_n=\sum_{k=0}^n (-1)^k {n\choose k} s_k.\end{equation}利用二项式反演可以计算错排数
$n$个元素的排列数为$n!$,$n$个元素的错排数为$D_n$。
排列$n$个元素,选取$k$个元素有$n \choose k$种方法,使$k$个元素都不在原位有$D_k$种方法,其余$n-k$个元素都在原位有1种方法。对$k=0,\cdots,n$求和,
\begin{equation}\label3n!=\sum _{k=0}^{n}{n \choose k}D_{k}.\end{equation}
即\[n!=\sum _{k=0}^{n}(-1)^k{n \choose k}(-1)^kD_{k}.\]
对$n!$与$(-1)^nD_n$应用二项式反演得到\[(-1)^nD_n=\sum_{k=0}^n(-1)^k\frac{n!}{(n-k)!}\]
即\[D_n=n!\sum_{k=0}^n\frac{(-1)^{n-k}}{(n-k)!}\]
求和指标可以用$n-k$代$k$:\begin{equation}D_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}\label4\end{equation}
把\eqref{4}代入\eqref{3}得到的恒等式又见这帖11#Finding a combinatorial proof of this identity
错位排列公式又见此帖此帖

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 03:39 GMT+8

Powered by Discuz!

Processed in 0.013977 seconds, 30 queries