Forgot password?
 Register account
View 279|Reply 6

[不等式] 证明二元AM-GM不等式

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2022-11-27 21:13 |Read mode
H. A. Priestley - Introduction to Integration - Clarendon Press; Oxford University Press, 1997
Exercise 2.10
(a) Let $ 0\lt \alpha\lt 1 $ and define $f(x)\coloneqq\alpha x - x^\alpha$.
Show that $f(x) \ge f(1) \  \forall x \ge 0$.
Hence show that $$ a^\alpha b ^{1-\alpha} \le \alpha a +(1-\alpha)b \ \ \forall a,b \ge 0$$
(b) Let $p$ and $q$ be such that $1<p<\infty$ and $p^{-1}+q^{-1}=1$, and let $A$ and $B$ be non-negative real numbers. Deduce from (a), with $\alpha=1/p$, that\[AB\le\frac{A^p}p+\frac{B^q}q,\]with equality if and only if $A^p=B^q$. [This inequality is needed in the theory of L$^p$-spaces; see Chapter 28.]

Rate

Number of participants 1威望 -1 Collapse Reason
色k -1

View Rating Log

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-27 21:19
(a) $f'(x)=\alpha x^{\alpha-1} \left(x^{1-\alpha}-1\right)$
当$0<x<1$时$f'(x)<0$; 当$x>1$时$f'(x)>0$.
由2.26(3)Corollaries of the MVT知, $f(x)\ge f(1)\ \forall x\ge0$.
$\forall a,b\ge0$, 令$x=\frac ab$有$f\left(a\over b\right)\ge f(1)=\alpha-1$. 即\begin{equation}\label1 a^\alpha b ^{1-\alpha} \le \alpha a +(1-\alpha)b\end{equation}取等条件为$x=1$, 即$a=b$.
(b) 在\eqref{1}代入$\alpha=\frac1p,1-\alpha=\frac1q$得\[a^{\frac1p} b ^{\frac1q} \le \frac{a}p+\frac{b}q\]令$a=A^p,b=B^q$得\[AB\le\frac{A^p}p+\frac{B^q}q\]取等条件为$A^p=B^q$.


又见Young's inequality for products–conjugate Hölder exponents

Rate

Number of participants 1威望 -1 Collapse Reason
色k -1

View Rating Log

13

Threads

901

Posts

110K

Credits

Credits
12272

Show all posts

色k Posted 2022-11-27 22:16 From mobile phone
Last edited by 色k 2022-11-27 22:24常识,任意一本不等式书籍都会介绍,抄来干嘛。

威望 -2

Comment

每天都要学一学 :)  Posted 2022-11-27 22:47

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-27 22:59

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-11-27 23:46
点评
hbghlyj    每天都要学一学 :)  发表于 2022-11-27 22:47
那你可以记录在你自己的笔记里,没必要抄上来。

Comment

好吧:)  Posted 2022-11-27 23:52

Mobile version|Discuz Math Forum

2025-6-5 18:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit