Forgot password?
 Create new account
View 148|Reply 2

平面追击问题

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-11-29 20:58:10 |Read mode
敌舰逆时针沿着以(2,0)为中心$1$为半径的圆航行, 速率恒为$2\pi\over3$.
从(0,0)发射一枚鱼雷, 速率恒为$\sqrt3$, 击中敌舰的最短时间?

解:
设发射时刻为0.
为了击中敌舰的时间最短, 让鱼雷方向始终指向敌舰, 此时相对速度最大, 也就是和目标的距离减少最快.
\begin{aligned}
y'(t)&=\frac{\sqrt{3} \left(\sin \left(\frac{2 \pi  t}{3}\right)-y(t)\right)}{\sqrt{\left(\sin \left(\frac{2 \pi
   t}{3}\right)-y(t)\right)^2+\left(2+\cos \left(\frac{2 \pi  t}{3}\right)-x(t)\right)^2}} \\
x'(t)&=\frac{\sqrt{3} \left(2+\cos \left(\frac{2 \pi  t}{3}\right)-x(t)\right)}{\sqrt{\left(\sin \left(\frac{2 \pi
   t}{3}\right)-y(t)\right)^2+\left(2+\cos \left(\frac{2 \pi  t}{3}\right)-x(t)\right)^2}} \\
x(0)&=y(0)=0
\end{aligned}使用NDSolve
  1. ClearAll[x,y];{x,y}=Last/@Evaluate[NDSolve[{y'[t]==Sqrt[3] (Sin[2Pi/3 t]-y[t])/Sqrt[(Sin[2Pi/3 t]-y[t])^2+(2+Cos[2Pi/3 t]-x[t])^2],x'[t]==Sqrt[3] (2+Cos[2Pi/3 t]-x[t])/Sqrt[(Sin[2Pi/3 t]-y[t])^2+(2+Cos[2Pi/3 t]-x[t])^2],x[0]==y[0]==0},{x,y},{t,0,1}][[1]]];
  2. t0=t/.FindRoot[EuclideanDistance[{x[t],y[t]},{2,0}]==1,{t,.3}];
  3. Show[ParametricPlot[{x[t],y[t]},{t,0,1}],Graphics[{Circle[{2,0},1],Red,PointSize[Large],Point[{x[t0],y[t0]}]}]]
Copy the Code

(图中红点)击中时刻$t_0\approx0.621934$ 1.png

其他轨迹如果能击中, 击中时间只会更长, 例如, 沿直线从(0,0)到$(\frac32,\frac{\sqrt3}2)$将在时刻$1$击中敌舰.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-29 20:59:17
可以用Geogebra的NSolveODE Command [Tools] 作出1#的轨迹吗

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-29 21:58:33

手机版Mobile version|Leisure Math Forum

2025-4-21 19:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list