Forgot password?
 Create new account
View 348|Reply 8

根式脱套 RadicalDenest

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2022-12-19 17:39:23 |Read mode
Last edited by hbghlyj at 2022-12-19 18:08:00Resource
Polynomial Root object simplification
ResourceFunction["RadicalDenest"][(2^(1/3) - 1)^(1/3)]
\[\sqrt[3]{\sqrt[3]{2}-1}=\frac{1-\sqrt[3]{2}+2^{2/3}}{3^{2/3}}\]
ResourceFunction["RadicalDenest"][√(65-6 √35-2 √22-6 √55+2 √77-2 √14+6 √10)]
\[\sqrt{6 \sqrt{10}-2 \sqrt{14}-2 \sqrt{22}-6 \sqrt{35}-6 \sqrt{55}+2 \sqrt{77}+65}=\sqrt{2}+3 \sqrt{5}-\sqrt{7}-\sqrt{11}\]
ResourceFunction["RadicalDenest"][((3 + 2*(5^(1/4)))/((3 - 2*(5^(1/4)))))^(1/4)]
\[\sqrt[4]{\frac{3+2 \sqrt[4]{5}}{3-2 \sqrt[4]{5}}}=\frac{\sqrt{5}+\sqrt[4]{5}+5^{3/4}+3}2\]
Radicals and units in Ramanujan's work找到的
ResourceFunction["RadicalDenest"][(1/5^(1/5)+(4/5)^(1/5))^(1/2)]
\[\sqrt{\sqrt[5]{\frac{4}{5}}+\sqrt[5]{\frac{1}{5}}}=\frac{-1+\sqrt[5]{2}+2^{3/5}+2^{4/5}}{5^{3/5}}\]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-20 00:58:24
Some identities of Ramanujan找到的
ResourceFunction["RadicalDenest"][((32/5)^(1/5)-(27/5)^(1/5))^(1/3)]
\[\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\frac{1+\sqrt[5]{3}-3^{2/5}}{5^{2/5}}\]
In the solution of the cubic equation找到的
ResourceFunction["RadicalDenest"][(-3+10Sqrt[3]I/9)^(1/3)+(-3-10Sqrt[3]I/9)^(1/3)]
\[\sqrt[3]{-3+\frac{10 \sqrt{3} i}{9}}+\sqrt[3]{-3-\frac{10 \sqrt{3} i}{9}}=2\]
关于Ramanujan’s denesting见ramanujanday.pdf

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2023-7-6 13:32:22
Last edited by 青青子衿 at 2023-7-27 10:02:00
hbghlyj 发表于 2022-12-20 00:58
从Some identities of Ramanujan找到的
ResourceFunction["RadicalDenest"][((32/5)^(1/5)-(27/5)^(1/5))^(1/3)]

\begin{align*}
\left(\frac{\left(1-\sqrt{3}\right) u^2+2 \left(1+\sqrt{1+u^3}\right)}
{\left(1+\sqrt{3}\right) u^2+2 \left(1+\sqrt{1+u^3}\right)}\right)^2
+\sqrt{3}\left(\frac{2 u \left(\sqrt{1+u}+\sqrt{1-u+u^2}\right)}{\left(1+\sqrt{3}\right) u^2+2 \left(1+\sqrt{1+u^3}\right)}\right)^2&=1\\

\left(\frac{(2-u) \sqrt{1+u}+(2+u) \sqrt{1-u+u^2}}
{\left(1+\sqrt{3}\right) u^2+2 \left(1+\sqrt{1+u^3}\right)}\right)^2
+\frac{3+2\sqrt{3}}{4}\left(\frac{2 u \left(\sqrt{1+u}+\sqrt{1-u+u^2}\right)}{\left(1+\sqrt{3}\right) u^2+2 \left(1+\sqrt{1+u^3}\right)}\right)^2&=1
\end{align*}

\begin{align*}
&\quad\left(\frac{\left(256+256 x^3+960 x^6+232 x^9+x^{12}\right)-32 \left(8-12 x^3-21 x^6-x^9\right) \sqrt{1+x^3}}{x^3 \left(8-x^3\right)^3}\right)^2\\
&=1+\left(\frac{32 \left(1+x^3\right)^2-4 \left(8-20 x^3-x^6\right) \sqrt{1+x^3}}{x^2 \left(8-x^3\right)^2}\right)^3
\end{align*}


  1. \left(\frac{32\left(1+t^{3}\right)^{2}-4\left(8-20t^{3}-t^{6}\right)\sqrt{1+t^{3}}}{t^{2}\left(8-t^{3}\right)^{2}},\frac{\left(256+256t^{3}+960t^{6}+232t^{9}+t^{12}\right)-32\left(8-12t^{3}-21t^{6}-t^{9}\right)\sqrt{1+t^{3}}}{t^{3}\left(8-t^{3}\right)^{3}}\right)
Copy the Code

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2023-9-15 16:38:00
来自hejoseph
\[\sqrt{4+\sqrt[3]{-26+6\sqrt{33}}+\sqrt[3]{-26-6\sqrt{33}}}+\sqrt{\sqrt[3]{54+6\sqrt{33}}+\sqrt[3]{54-6\sqrt{33}}}=\sqrt{8+2\sqrt[3]{19+3\sqrt{33}}+2\sqrt[3]{19-3\sqrt{33}}}\]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2024-3-10 01:45:52
Last edited by 青青子衿 at 2025-2-11 22:34:00Theorems on Field Extensions and Radical Denesting
PRIMES-USA final research paper
by Kaan Dokmeci
Mentor: Yongyi Chen
September 26, 2017
math.mit.edu/research/highschool/primes/mater … als/2017/Dokmeci.pdf
Denesting certain nested radicals of depth two
M. Honsbeek
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NIJMEGEN
Toernooiveld
6525 ED Nijmegen
The Netherlands
repository.ubn.ru.nl/bitstream/handle/2066/18 … 18722.pdf?sequence=1


  1. ResourceFunction["RadicalDenest"][Sqrt[
  2. 31 - (8 - I Sqrt[371])/5 (6 - 3 I Sqrt[371])^(1/3) - (
  3.    8 + I Sqrt[371])/5 (6 + 3 I Sqrt[371])^(1/3)]]
Copy the Code


kuing.cjhb.site/forum.php?mod=viewthread& … mp;highlight=Ramanuj
Ramanujan's identity involving cube roots
math.stackexchange.com/questions/61814
Lemma 5.
5 Connection with Ramanujan’s denesting

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2024-4-10 15:58:43
Last edited by 青青子衿 at 2024-8-7 20:40:00
\begin{align*}
\scriptsize\sqrt{\tiny-\tfrac{\scriptsize39\sqrt{3}}{\scriptsize2}+\tfrac{\scriptsize13\sqrt{15\sqrt{13}-54}}{\scriptsize4}i}=
{\scriptsize\tfrac{(13+5\sqrt{13}+13\sqrt{18+5\sqrt{13}}-5\sqrt{234+65\sqrt{13}}){\Tiny\sqrt{2\sqrt{15\sqrt{13}-54}}}}{8}
+\tfrac{(5\sqrt{13}+\sqrt{130\sqrt{13}-442}-13){\Tiny\sqrt{2\sqrt{54+15\sqrt{13}}}}}{8}i}
\end{align*}


  1. ( (13 + 5 Sqrt[13] + 13 Sqrt[18 + 5 Sqrt[13]] -
  2.      5 Sqrt[234 + 65 Sqrt[13]]) Sqrt[2 Sqrt[15 Sqrt[13] - 54]])/
  3.   8 +  ( (5 Sqrt[13] + Sqrt[130 Sqrt[13] - 442] - 13) Sqrt[
  4.     2 Sqrt[54 + 15 Sqrt[13]]])/8 I // N
  5. Sqrt[-((39 Sqrt[3])/2) + (13 Sqrt[15 Sqrt[13] - 54])/4 I] // N
Copy the Code



\begin{align*}
\scriptsize\Big(\tfrac{(3-\sqrt{5})\sqrt{2(1+\sqrt{5})}+2i(\sqrt{5}-2)}{2}\Big)^{2}+\Big(\tfrac{3\sqrt{2}-\sqrt{10}-2i(\sqrt{5}-2)\sqrt{1+\sqrt{5}}}{2}\Big)^{2}
\end{align*}

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2025-2-11 22:36:55
Last edited by 青青子衿 at 2025-2-13 23:19:005 Connection with Ramanujan’s denesting
6 Denesting nested square roots
isibang.ac.in/~sury/ramanujanday.pdf

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2025-2-13 21:43:36
才发现Mathematica的开嵌套根式的命令可以增加运算时间
Timing@ResourceFunction[
   "RadicalDenest"][( (-714281041427178275 -
     319436192585180916 Sqrt[5] + 3399205479600 Sqrt[6] +
     1520195971224 Sqrt[30]))^(1/3)/(80 - 30 Sqrt[6])^(1/3),
  TimeConstraint -> 30]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-14 06:17:08
RadicalDenest有一般的算法吗?

手机版Mobile version|Leisure Math Forum

2025-4-20 12:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list