Forgot password?
 Register account
View 288|Reply 2

[数论] 共轭根式的幂之和是整数的条件

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-12-23 05:49 |Read mode
求所有整数$a,b$使\[c_n:=\left(\frac{a+\sqrt{b}}{2}\right)^n+\left(\frac{a-\sqrt{b}}{2}\right)^n\]是整数, 对于所有正整数$n$.
来源
(转载ysharifi的博客)
Problem. Given integers $a,b,c,d$, consider the sequence\[x_n:=\left(\frac{a+d+\sqrt{(a-d)^2+4bc}}{2}\right)^n + \left(\frac{a+d-\sqrt{(a-d)^2+4bc}}{2}\right)^n\]Show that $x_n$ is an integer for all integers $n\ge1$.

Solution. Consider the matrix $A:=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z})$.
Let, as always, $I \in M_2(\mathbb{Z})$ be the identity matrix. We now find the eigenvalues of $A$. We have\[\det(xI-A)=\det \begin{pmatrix}x-a & -b \\ -c & x-d\end{pmatrix}=x^2-(a+d)x+ad-bc,\]and so the eigenvalues of $A$, which are the roots of the above quadratic polynomial, are\[\lambda_1=\frac{a+d+\sqrt{(a-d)^2+4bc}}{2}, \ \ \ \ \ \ \lambda_2= \frac{a+d-\sqrt{(a-d)^2+4bc}}{2}.\]Now, since all the entries of $A$ are integers, all the entries of $A^n$ are also integers for all integers $n \ge 1$. Thus the trace of $A^n$ is an integer for all $n \ge 1$. But the trace of $A^n$ is the sum of the eigenvalues of $A^n$ and the eigenvalues of $A^n$ are $\lambda_1^n, \lambda_2^n$. Thus $x_n=\lambda_1^n+\lambda_2^n$ is an integer for all $n \ge 1$.$ \ \Box$

Remark. Given integers $a,b$, it is clear that\[c_n:=\left(\frac{a+\sqrt{b}}{2}\right)^n+\left(\frac{a-\sqrt{b}}{2}\right)^n\]is a rational number for all integers $n \ge 1$. But $c_n$ is not always an integer; e.g., choose $a=1, b=0, \ n=2$. So, considering the above problem, we got a good question to think about: can we find all the integers $a,b$ for which $c_n$ is an integer for all integers $n \ge 1$?

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2022-12-23 19:58
记 $c_n (a,b)=\left(\dfrac{a+\sqrt b}{2}\right)^n+\left(\dfrac{a-\sqrt b}{2}\right)^n$, 则 $c_n(a,b)$ 恒为整数等价于 $c_n(a\pm 2,b)$ 恒为整数(观察二项展开). 故考虑 $a=0,1$ 的情形即可.

Case I. $a=0$, 考察 $c_{2n}(0,b)=2\cdot \left(\dfrac{b}{4}\right)^n$ 即可.

Case II. $a=1$, 则 $c_2(1,b)=\dfrac{1+b}{2}$, $c_3(1,b)=\dfrac{1+3b}{4}$. 从而 $c_n (1,b)$ 恒为整数的必要条件是 $b\equiv 1\mod 4$. 我们断言一切模 $4$ 余 $1$ 的 $b$ 即为所求.

Case II-1. $b$ 为平方数时显然, 因为 $1+\sqrt b$ 为偶数.

Case II-2. $b$ 不为平方数时, 由于奇平方数模 $4$ 余 $1$, 从而不妨将 $b $ 写作形如 $m^2\cdot d$ 的既约形式, 其中 $d\equiv 1\mod 4$, $n\in \mathbb N$. 此时 $\mathbb Q(\sqrt d)$ 上的代数整数环为 $\mathbb Z[\frac{1+\sqrt d}{2}]$, 从而 $c_n(1,b)$ 恒为代数整数. 注意到 $c_n (1,b)$ 在 $\mathrm {Hom}_{\mathbb Q}(\mathbb Q,\mathbb Q(\sqrt d))$ 下不变 (Galois 群为 $\sqrt d\mapsto \pm\sqrt d$), 从而 $c_n (1,b)$ 为不含 $\dfrac{1+\sqrt d}{2}$ 项的代数整数, 即整数.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-12-23 21:46
Czhang271828 发表于 2022-12-23 12:58
Case II. $a=1$,
...
断言一切模 $4$ 余 $1$ 的 $b$ 即为所求.
也可以使用递推式$$c_n=a\cdot c_{n-1}-\frac{a^2-b}4\cdot c_{n-2}$$
因为 $b\equiv1\pmod4$, 所以 $\frac{a^2-b}4$ 是整数, 所以 $c_n$是整数.
相关帖子:由特征方程构造线性递推

Mobile version|Discuz Math Forum

2025-5-31 11:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit