Forgot password
 Register account
View 149|Reply 0

互信息非负

[Copy link]

3222

Threads

7840

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-1-12 00:55 |Read mode
在互信息定义的基础上使用Jensen不等式,我们可以证明 $I(X;Y)$ 是非负的,因此 $H(X)\geq H(X|Y)$。这里我们给出 $I(X;Y) = H(Y) - H(Y|X)$ 的详细推导:\begin{aligned}I(X;Y)&{}=\sum _{{x,y}}p(x,y)\log {\frac {p(x,y)}{p(x)p(y)}}\\&{}=\sum _{{x,y}}p(x,y)\log {\frac {p(x,y)}{p(x)}}-\sum _{{x,y}}p(x,y)\log p(y)\\&{}=\sum _{{x,y}}p(x)p(y|x)\log p(y|x)-\sum _{{x,y}}p(x,y)\log p(y)\\&{}=\sum _{x}p(x)\left(\sum _{y}p(y|x)\log p(y|x)\right)-\sum _{y}\log p(y)\left(\sum _{x}p(x,y)\right)\\&{}=-\sum _{x}p(x)H(Y|X=x)-\sum _{y}\log p(y)p(y)\\&{}=-H(Y|X)+H(Y)\\&{}=H(Y)-H(Y|X).\\\end{aligned}相关帖子: 对数的不等式
抄自维基–互信息

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 16:17 GMT+8

Powered by Discuz!

Processed in 0.013379 seconds, 28 queries