Forgot password?
 Create new account
View 130|Reply 1

[不等式] Jensen不等式 有限形式

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-6-10 23:51:06 |Read mode
[科普]发个旧资料《梳理一些常用不等式》Wikipedia:Jensen不等式 有限形式
若$φ$是convex function,$ \Omega $是有限集合$ \{x_{1},x_{2},\ldots ,x_{n}\} $,而$ \mu $是$ \Omega $上的計數測度,則
$$ \varphi \left(\sum _{i=1}^{n}x_{i}\lambda _{i}\right)\leq \sum _{i=1}^{n}\varphi (x_{i})\lambda _{i} $$
其中$ \lambda _{1}+\lambda _{2}+\cdots +\lambda _{n}=1,\lambda _{i}\geq 0 $.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-10 23:54:17

证明2比证明1(使用数学归纳法)短很多,如何理解

证明2中定义的$x_0$满足$ax_{0}+b=\varphi (x_{0}).$
在有限形式中$\mu _{n}=\sum _{i=1}^{n}\lambda _{i}\delta _{x_{i}}.$那么$\mu (\Omega )=1$等价于$1=\sum _{i=1}^{n}\lambda _{i}$
那么subderivative $ax+b$在有限形式中是什么函数呢
发现public-vpn-57.opengw.net很好用的219.100.37.21

手机版Mobile version|Leisure Math Forum

2025-4-20 22:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list