Forgot password?
 Create new account
View 2284|Reply 12

二阶导函数$f''(x)$与极限

[Copy link]

3

Threads

13

Posts

84

Credits

Credits
84

Show all posts

weigang99888 Posted at 2016-1-18 21:54:32 |Read mode
Last edited by hbghlyj at 2025-3-21 04:56:15是否有如下的公式:
$$f''(x)=k\lim_{\Delta x\to0}[\dfrac{f(x-\Delta x)+f(x+\Delta x)}{2}-f(x)]$$其中$k$为常数。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-1-19 04:19:57
回复 1# weigang99888


明显就错的嘛,只要你$f(x)$是连续的,这玩意直接等于$0$

很显然底下还缺一个$\Delta x$

3

Threads

13

Posts

84

Credits

Credits
84

Show all posts

 Author| weigang99888 Posted at 2016-1-19 09:19:48
Last edited by hbghlyj at 2025-3-21 04:51:29回复 2# 战巡

可能我的表述还不够准确,来自于凹凸性的内容:
$\dfrac{f(x_1)+f(x_2)}{2}>f(\dfrac{x_1+x_2}{2})$则函数$f(x)$为凹函数,$\dfrac{f(x_0+\Delta x)+f(x_0-\Delta x)}{2}>f(x_0)$则函数$f(x)$在点$x_0$处下凹,那么$\dfrac{f(x_0+\Delta x)+f(x_0-\Delta x)}{2}-f(x_0)$与$f''(x_0)$的关系应该为     

3

Threads

13

Posts

84

Credits

Credits
84

Show all posts

 Author| weigang99888 Posted at 2016-2-25 20:15:29

二阶导函数$f''(x)$与极限

二阶导函数$f''(x)$与极限$\lim \limits_{h\to 0}\dfrac{f(x+h)+f(x-h)-2f(x)}{h^2}$是否相等?
即$f''(x)=\lim \limits_{h\to 0}\dfrac{f(x+h)+f(x-h)-2f(x)}{h^2}$是否成立?为什么?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-2-25 23:30:53
回复 1# weigang99888


并不完全相等,仅在函数连续的情况下可以保证相等
连续情况很容易证明

不连续的话参考以下反例:
\[f(x)=\begin{cases} 1,  x>0 \\0,  x=0\\-1,  x<0\end{cases}\]
此时在$x=0$这个点显然是不可导的,也没有二阶导数
但却有
\[\lim_{h\to 0}\frac{f(0+h)+f(0-h)-2f(0)}{h^2}=0\]

3

Threads

13

Posts

84

Credits

Credits
84

Show all posts

 Author| weigang99888 Posted at 2016-2-26 08:28:59
在连续的情况下如何证明?谢谢!

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-2-28 02:51:22
回复 3# weigang99888


这还要问?

洛必达法则得
\[\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}=\lim_{h\to 0}\frac{f'(x+h)-f'(x-h)}{2h}=f''(x)\]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2016-2-28 03:15:21
回复 4# 战巡

用洛医院的话,仅有连续的条件够吗?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2016-2-28 10:21:12
回复 5# kuing


连续且二阶可导
我是懒得讲那么多

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2016-2-28 13:44:43
\[\led
f(x+h)&=f(x)+hf'(x)+\frac12h^2f''(x)+o(h^2),\\
f(x-h)&=f(x)-hf'(x)+\frac12h^2f''(x)+o(h^2)
\endled
\riff
\lim_{h\to0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}=\lim_{h\to0}\frac{h^2f''(x)+o(h^2)}{h^2}=f''(x)\]

3

Threads

13

Posts

84

Credits

Credits
84

Show all posts

 Author| weigang99888 Posted at 2016-2-28 16:59:21
太精彩啦!

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-2-28 20:50:36
Finite difference
Second-order central
\[f''(x)\approx {\frac {\delta _{h}^{2}[f](x)}{h^{2}}}={\frac {{\frac {f(x+h)-f(x)}{h}}-{\frac {f(x)-f(x-h)}{h}}}{h}}={\frac {f(x+h)-2f(x)+f(x-h)}{h^{2}}}.\]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-4-19 12:00:02

局部凸

weigang99888 发表于 2016-1-19 02:19
回复 2# 战巡
...那么$\dfrac{f(x_0+\Delta x)+f(x_0-\Delta x)}{2}-f(x_0)$与$f''(x_0)$的关系应该为_________
应该为$\displaystyle\lim_{\Delta x\to0}\left(\dfrac{f(x_0+\Delta x)+f(x_0-\Delta x)}2-f(x_0)\right)\cdot f''(x_0)\ge0$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list