|
kuing 发表于 2014-10-16 08:50
而 $f\bigl(\lambda x_1+(1-\lambda)x_2\bigr)\leqslant \lambda f(x_1)+(1-\lambda)f(x_2)$ 的定义虽然表面看上去没有连续的条件,实际上由这个不等式就可以推出连续。
补充一下,这是 Walter Rudin 所著《数学分析原理》一书中的练习 4.23
Exercise 4.23 A real-valued function $f$ defined in $(a, b)$ is said to be convex if
$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$
whenever $a<x<b, a<y<b, 0<\lambda<1$.
- Prove that every convex function is continuous.
- Prove that every increasing convex function of a convex function is convex. (For example, if $f$ is convex, so is $e^f$.)
- If $f$ is convex in $(a, b)$ and if $a<s<t<u<b$, show that
$$
\frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-f(s)}{u-s} \leq \frac{f(u)-f(t)}{u-t}
$$
Solution.
- Fix any points $c$, $d$ with $a<c<d<b$, let $\eta>0$ be any fixed positive number with $\eta<\frac{d-c}{2}$ and consider any two points $x, y$ satisfying $c+\eta \leq x<y \leq d-\eta$. The inequality in the definition implies that $f(t)$ is bounded above on $[c, d]$. Indeed, if $c<t<d$, taking $\lambda=\frac{t-c}{d-c}$, we have $t=(1-\lambda) c+\lambda d$, and so, if $M=\max (f(c), f(d))$, we have
$$
f(t) \leq(1-\lambda) f(c)+\lambda f(d) \leq(1-\lambda) M+\lambda M=M .
$$
It is less obvious that $f$ is also bounded below on $[c, d]$. In fact if $\frac{c+d}{2}<t<d$, we have
$$
\frac{c+d}{2}=(1-\lambda) c+\lambda t
$$
where $\lambda=\frac{d-c}{2(t-c)}$, so that
$$
f\left(\frac{c+d}{2}\right) \leq\left(\frac{2 t-(c+d)}{2(t-c)}\right) f(c)+\left(\frac{d-c}{2(t-c)}\right) f(t)
$$
which implies
$$f(t) \geq\left(\frac{2(t-c)}{d-c}\right) f\left(\frac{c+d}{2}\right)-\left(\frac{2 t-(c+d)}{d-c}\right) f(c) \geq-2\left|f\left(\frac{c+d}{2}\right)\right|-|f(c)|
$$
The proof that $f$ is bounded below on $\left[c, \frac{c+d}{2}\right]$ is similar. Hence there exists $M$ such that $|f(t)| \leq M$ for all $t \in[c, d]$.
We can also write
$$
x=(1-\lambda) c+\lambda y
$$
where $\lambda=\frac{x-c}{y-c} \in(0,1)$. Accordingly we have
$$
\begin{aligned}
f(x)-f(y) \leq(1-\lambda)(f(c)- & f(y))= \\
& =\frac{y-x}{y-c}(f(c)-f(y)) \leq \frac{y-x}{\eta}|f(c)-f(y)|
\end{aligned}
$$
Thus
$$
f(x)-f(y) \leq \frac{2 M}{\eta}(y-x)
$$
Similarly, writing $y=\lambda x+(1-\lambda) d$, where $\lambda=\frac{d-y}{d-x} \in(0,1)$, we find
$$
\begin{aligned}
f(y)-f(x) \leq(1-\lambda)(f(d)- & f(x))= \\
& =\frac{y-x}{d-x}(f(d)-f(x)) \leq \frac{y-x}{\eta}|f(d)-f(x)|
\end{aligned}
$$
Hence we also have
$$
f(y)-f(x) \leq \frac{2 M}{\eta}(y-x)
$$
Therefore
$$
|f(y)-f(x)| \leq \frac{2 M}{\eta}|y-x|
$$
for all $x, y \in[c+\eta, d-\eta]$. Since $c, d$, and $\eta$ are arbitrary, it follows that $f$ is continuous on $(a, b)$. - If $f(x)$ is convex on $(a, b)$, and $g(x)$ is an increasing convex function on $f((a, b))$, we have
$$
g(f(\lambda x+(1-\lambda) y)) \leq g(\lambda f(x)+(1-\lambda) f(y)) \leq \lambda g(f(x))+(1-\lambda) g(f(y))
$$ - The inequality
$$
\frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-f(s)}{u-s}
$$
can be rewritten as
$$
f(t) \leq \frac{t-s}{u-s} f(u)+\left(1-\frac{t-s}{u-s}\right) f(s)
$$
which is precisely the definition of convexity if we note that
$$
t=\lambda u+(1-\lambda) s
$$
when $\lambda=\frac{t-s}{u-s}$.
The other inequality is proved in exactly the same way.
|
|