Forgot password?
 Register account
View 290|Reply 7

[几何] 内切圆上任意点到三角形顶点的距离

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-4 21:28 |Read mode
C. V. Durell, A. Robson - Advanced Trigonometry
(page 18) Evercise I. d.

27. $T$为任意点. 证明$$TA^{2} \cdot \sin 2 A+T B^{2} \cdot \sin 2 B+T C^{2} \cdot \sin 2 C=4\left(R^{2}+O T^{2}\right) \sin A \sin B \sin C$$28. $T$为内切圆上任意点. $\Delta$为$\triangle ABC$的面积. 证明$$a \cdot TA^{2}+b \cdot TB^{2}+c \cdot TC^{2}=2 \Delta(r+2 R)$$
29. 外接圆、旁切圆$I_1$的公共弦$=\sqrt{\frac{r_{1}^{3}\left(4R-r_{1}\right)}{R\left(R+2 r_{1}\right)}}$
30. $t_1,t_2,t_3$为旁心$I_1,I_2,I_3$到外接圆的切线长. $r_1,r_2,r_3$为旁切圆半径. 证明$$\text{(i) }\frac{t_{1}{ }^{2}}{t_{2}{}^{2}}=\frac{r_{1}}{r_{2}};\quad\text{(ii) }t_{1} t_{2} t_{3}=a b c \sqrt\frac{R}{2 r}$$
1-min.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-4 21:48

29.


旁切圆欧拉定理得\begin{equation}\label1
OI_1^2=R^2+2Rr_1
\end{equation}设外接圆、旁切圆的公共弦为$2x$, 则用三边的面积公式得$x=\sqrt\frac{r_1^3(4 R-r_1)}{R(8 r_1+4 R)}$
即$2x=\sqrt\frac{r_1^3(4 R-r_1)}{R(2 r_1+ R)}$

Comment

直接用三边的面积公式,$x$ 就是 $OI_1$ 的高  Posted 2023-3-4 23:37
谢谢;已改。  Posted 2023-3-5 02:19

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-4 22:00

30.

由\eqref{1}得$t_1^2=OI_1{}^2-R^2=R^2+2Rr_1-R^2=2Rr_1$.
(i) 代入得 $\frac{t_{1}{ }^{2}}{t_{2}{}^{2}}=\frac{2Rr_{1}}{2Rr_{2}}=\frac{r_{1}}{r_{2}}$.
(ii) 代入得 $t_{1} t_{2} t_{3}=\sqrt{8R^3r_1r_2r_3}=a b c \sqrt\frac{R}{2 r}$
第二步使用了 $\sqrt{r_1r_2r_3}= \frac{abc}{4R\sqrt r}$
证明
从 $\Delta=sr=(s-a)r_1=(s-b)r_2=(s-c)r_3=\sqrt{s(s-a)(s-b)(s-c)}$ 易得 $\Delta=\sqrt{rr_1r_2r_3}$
代入 $\Delta=\frac{abc}{4R}$ 可得 $\sqrt{rr_1r_2r_3}=\frac{abc}{4R}$ 即$\sqrt{r_1r_2r_3}=\frac{abc}{4R\sqrt r}$

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2023-3-4 22:41
Last edited by hejoseph 2023-3-4 23:2827题,设 $T$ 关于 $\triangle ABC$ 的重心坐标为 $(x,y,z)$,其中 $x+y+z=1$,命题等价于证明
\[
a\cdot TA^2\cdot\cos A+b\cdot TB^2\cdot\cos B+c\cdot TC^2\cdot\cos C=\frac{abc}{2}\left(1+\frac{OT^2}{R^2}\right)
\]
利用重心坐标的结论可得
\begin{align*}
TA^2&=(1-x)(zb^2+yc^2)-yza^2\\
TB^2&=(1-y)(za^2+xc^2)-xzb^2\\
TC^2&=(1-z)(ya^2+xb^2)-xyc^2\\
OT^2&=R^2-yza^2-xzb^2-xyc^2
\end{align*}
然后两边展开一下余弦值以及 $R$ 用边代替就能得结论。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2023-3-4 23:23
Last edited by hejoseph 2023-3-4 23:3228题仍然可以用重心坐标,仍设$T$关于$\triangle ABC$的重心坐标为$(x,y,z)$,其中$x+y+z=1$,则
\begin{align*}
TA^2={}&(1-x)(zb^2+yc^2)-yza^2\\
TB^2={}&(1-y)(za^2+xc^2)-xzb^2\\
TC^2={}&(1-z)(ya^2+xb^2)-xyc^2\\
TI^2={}&{-}\left(y-\frac{b}{a+b+c}\right)\left(z-\frac{c}{a+b+c}\right)a^2\\
&{}-\left(x-\frac{a}{a+b+c}\right)\left(z-\frac{c}{a+b+c}\right)b^2\\
&{}-\left(x-\frac{a}{a+b+c}\right)\left(y-\frac{b}{a+b+c}\right)c^2=r^2
\end{align*}
$r^2$ 用边代替,那么
\begin{align*}
&{-}\left(y-\frac{b}{a+b+c}\right)\left(z-\frac{c}{a+b+c}\right)a^2\\
&{}-\left(x-\frac{a}{a+b+c}\right)\left(z-\frac{c}{a+b+c}\right)b^2\\
&{}-\left(x-\frac{a}{a+b+c}\right)\left(y-\frac{b}{a+b+c}\right)c^2-r^2\\
={}&\frac{4U-V}{4(a+b+c)}=0
\end{align*}
其中
\begin{align*}
U&=zab(a+b)+yac(a+c)+xbc(b+c)-4(yza^2+xzb^2+xyc^2)(a+b+c)\\
V&=ab(a+b)+ac(a+c)+bc(b+c)+2abc-(a^3+b^3+c^3)
\end{align*}
由上面的重心坐标结果计算得
\[
a\cdot TA^2+b\cdot TB^2+c\cdot TB^2=U
\]
结合上式得
\[
a\cdot TA^2+b\cdot TB^2+c\cdot TB^2=\frac{V}{4}
\]
面积、外接圆半径、内切圆半径用边长代替即得
\[
2\Delta(r+2R)=\frac{V}{4}
\]

\[
a\cdot TA^2+b\cdot TB^2+c\cdot TB^2=2\Delta(r+2R)
\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-5 02:28

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit