|
自动定理证明 数据集miniF2F
arxiv
OpenAI research
aime_1990_p15
Find $ax^5 + by^5$ if the real numbers $a, b, x,$ and $y$ satisfy the equations\begin{aligned} a x+b y & =3 \\ a x^{2}+b y^{2} & =7 \\ a x^{3}+b y^{3} & =16 \\ a x^{4}+b y^{4} & =42\end{aligned}
- theorem aime_1990_p15
- (a b x y : R)
- (h0 : a * x + b * y = 3)
- (h1 : a * x^2 + b * y^2 = 7)
- (h2 : a * x^3 + b * y^3 = 16)
- (h3 : a * x^4 + b * y^4 = 42) :
- a * x^5 + b * y^5 = 20 :=
- begin
- revert_all,
- intros a b x y h3 h1 h2 h4,
- ring_nf at h1 h2,
- rw ← sub_eq_zero at h1,
- nlinarith [sq_nonneg (x - y), sq_nonneg (a + b - 2),
- sq_nonneg (x + y - (2:R)), sq_nonneg (a - b - 2)]
- end
Copy the Code |
|