Forgot password?
 Register account
View 320|Reply 27

[不等式] 几个简单的不等式

[Copy link]

16

Threads

18

Posts

329

Credits

Credits
329

Show all posts

Canhuang Posted 2023-4-14 20:17 |Read mode
Last edited by Canhuang 2023-4-14 21:17(1) $a,b>0,\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}=\dfrac{1}{2}$, 求 $a+b$ 的最小值
(2) $\sum \dfrac{1}{a^2+1}=2$, 证明 $a+b+c>2$
(3) $x,y>0,x^2+y^3 \geqslant x^3+y^4$, 怎么用柯西不等式证明 $x^2+y^2 \leqslant x+y$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 20:46

(3)

$x^2 + y^3 \geq x^3 + y^4$ so
$(x^2 + y^3)(x + y^2) \geq (x^3 + y^4)(x + y^2) \geq (x^2 + y^3)^2$, where the last inequality is Cauchy's inequality.
Hence, $x + y^2 \geq x^2 + y^3.$
$$\implies x-x^2\ge y^3-y^2\ge y^2-y$$

16

Threads

18

Posts

329

Credits

Credits
329

Show all posts

 Author| Canhuang Posted 2023-4-14 21:17
hbghlyj 发表于 2023-4-14 21:14
$\sum \frac{1}{a^2+1}=\frac{1}{a^2+1}+\frac{1}{b^2+1}$是这个意思吗?但如果是这样$$\frac{1}{a^2+1}+\f ...
已改

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 21:24

(2)

$\frac{1}{1+a^2} = 1 - \frac{a^2}{1+a^2} \geq 1- \frac{a^2}{2a} = 1- \frac{a}{2} $   (等式成立当且仅当$a=0,1$).  相加
$$2=\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \ge3 - \frac{a+b+c}{2} \implies a+b+c\ge 2$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 21:29
当 $(a,b,c)=(1,1,0)$ 等式成立
我认为应该将 $>$ 更改为 $\ge$

Comment

正数  Posted 2023-4-14 21:32

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 21:38

(2)

AOPS
For $a,b,c>0$
$$\sum\frac{1}{1+a^2}\geq 2\iff1\ge\sum\frac{a^2}{a^2+1}$$
By AM-GM
$$1\ge\sum\frac{a^2}{2a}=1$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-4-14 21:59
hbghlyj 发表于 2023-4-14 20:46
$x^2 + y^3 \geq x^3 + y^4$ so
$(x^2 + y^3)(x + y^2) \geq (x^3 + y^4)(x + y^2) \geq (x^2 + y^3)^2$, where the last inequality is Cauchy's inequality.
Hence, $x + y^2 \geq x^2 + y^3.$
$$\implies x-x^2\ge y^3-y^2\ge y^2-y$$
单看最后那一行,不如直接
\[x-x^2\geqslant x^2-x^3\geqslant y^4-y^3\geqslant y^3-y^2\geqslant y^2-y\]
就完事了😉

另外,你也曾经尝试求最佳指数:
forum.php?mod=viewthread&tid=6765
然鹅最后并没搞出来😌

Comment

书上写的提示是用柯西,但是个人觉得分类讨论一下就行了. 所以觉得柯西就有些莫名其妙  Posted 2023-4-14 22:12
好历害👍这么久的帖子也记得  Posted 2023-4-15 04:47

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-4-14 22:02
第一问应该用一下切线法就好了
$$
\frac{1}{x^2+1}-\frac{5-\sqrt{3}x}{8}=\frac{(\sqrt{3}x+1)(x-\sqrt{3})^2}{8(x^2+1)}\geqslant0~~(x>0)
$$
于是
$$
\frac12=\frac{1}{a^2+1}+\frac{1}{b^2+1}\geqslant\frac54-\frac{\sqrt{3}}{8}(a+b)
$$
整理得
$$
a+b\geqslant\left(\frac54-\frac12\right)\times\frac{8}{\sqrt{3}}=2\sqrt{3}
$$

Comment

希望有更简单的方法  Posted 2023-4-14 22:11

16

Threads

18

Posts

329

Credits

Credits
329

Show all posts

 Author| Canhuang Posted 2023-4-14 22:09
kuing 发表于 2023-4-14 21:59
单看最后那一行,不如直接
\[x-x^2\geqslant x^2-x^3\geqslant y^4-y^3\geqslant y^3-y^2\geqslant y^2-y ...
本来是个很简单的题目,原来还有有趣的延申

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 22:14

(1)

$x=a^2,y=b^2$
$\sqrt x+\sqrt y=\sqrt k$是轴倾斜45度的抛物线$x,y>0,\dfrac{1}{x+1}+\dfrac{1}{y+1}=\dfrac{1}{2}$是双曲线的一支

缩放抛物线使其与双曲线相切,因为它们都关于 $y=x$ 对称,切点在 $y=x$ 上。

16

Threads

18

Posts

329

Credits

Credits
329

Show all posts

 Author| Canhuang Posted 2023-4-14 22:16
(2)是 $$a,b,c>0,\sum \sqrt{\frac{a}{b+c}}>2$$ 的等价版本.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-4-14 22:18
Canhuang 发表于 2023-4-14 22:16
(2)是 $$a,b,c>0,\sum \sqrt{\frac{a}{b+c}}>2$$ 的等价版本.
这倒是很熟悉的东东 `\sqrt{\frac{a}{b+c}}>\frac{2a}{a+b+c}` 😄

16

Threads

18

Posts

329

Credits

Credits
329

Show all posts

 Author| Canhuang Posted 2023-4-14 22:23
kuing 发表于 2023-4-14 22:18
这倒是很熟悉的东东 `\sqrt{\frac{a}{b+c}}>\frac{2a}{a+b+c}` 😄
这个怎么证明

Comment

由均值\[\sqrt{\frac{a}{b+c}}=\frac{2a}{2\sqrt{a(b+c)}}>\frac{2a}{a+b+c}\]  Posted 2023-4-14 22:26
很好!原解答用的是调整法.  Posted 2023-4-14 22:28
这个均值帅啊  Posted 2023-4-14 22:30
emm...其实单个写应该是 `\geqslant`,只不过三个不可能同时取等,所以最终才变成 `>`  Posted 2023-4-14 22:33

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-4-14 22:29
配方得
$$
\frac{a}{b+c}-\frac{4a^2}{(a+b+c)^2}=\frac{a(a-b-c)^2}{(b+c)(a+b+c)^2}
$$

Comment

配方更适合证明吧, 放缩需要不等式.  Posted 2023-4-14 22:31

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 22:37
(2) 需要在1#问题中添加条件:$a,b,c$ 为正数

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 22:41
Last edited by hbghlyj 2023-4-16 22:43
hbghlyj 发表于 2023-4-14 15:14
$x=a^2,y=b^2$
缩放抛物线使其与双曲线相切,因为它们都关于 $y=x$ 对称,切点在 $y=x$ 上。 ...
关于“切点在$y=x$上”的证明, 见此帖

Comment

其实我觉得这题用切线法就很直接了...计算量不大, 关键是不需要动脑子 (喜)  Posted 2023-4-14 22:43

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-4-14 23:19
O-17 发表于 2023-4-14 22:02
第一问应该用一下切线法就好了
$$
\frac{1}{x^2+1}-\frac{5-\sqrt{3}x}{8}=\frac{(\sqrt{3}x+1)(x-\sqrt{3} ...
应楼主要求, 又想到了第一问的另一个方法...但我并不觉得比切线法简单多少 (关键是这样做还得动脑子唉)
首先不难将约束条件转化为 $a^2b^2=a^2+b^2+3\geqslant2ab+3$ 解得 $ab\geqslant3$ .
然后这个约束条件又可以化为 $(a+b)^2=a^2b^2+2ab-3$ , 因为 $y=x^2+2x-3$ 在 $\left[3,+\infty\right)$ 严格增, 所以有 $(a+b)^2\geqslant12$ , 于是 $a+b\geqslant2\sqrt{3}$ .

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit