Forgot password?
 Create new account
View 184|Reply 7

[函数] 一道函数不等式>tan(x)

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-4-16 07:00:56 |Read mode
Last edited by hbghlyj at 2023-4-16 22:07:00当$0<x<\sqrt{3\over2}$时$${x\over\sqrt{1-\frac23 x^2}}>\tan(x)$$来源:
  1. Series[Cot[x]^2, {x, 0, 2}]
Copy the Code

Laurent expansion 1/tan^2(x) at x=0$$\cot^2x=x^{-2} - \frac23 +O(x^2)$$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-17 05:04:03
kuing 发表于 2013-10-27 09:58
回复 8# kuing

运用刚才求导的结果,应该是 $k>1/3$。
由此得$$\arcsin\left(x\over\sqrt{1+\frac13x^2}\right)>x$$取$\tan$得
$${x\over\sqrt{1-\frac23 x^2}}=\tan\left(\arcsin\left(x\over\sqrt{1+\frac13x^2}\right)\right)>\tan(x)$$

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-4-21 13:27:18
最近展了一个 ln(1+x) 的帕德逼近R(2,2),心中猜想该不会是 tan^2(x) 的R(2,2)吧?
isee=freeMaths@知乎

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-21 13:31:49
isee 发表于 2023-4-21 06:27
tan^2(x) 的R(2,2)吧?
PadeApproximant[Tan[x]^2,{x,0,{2,2}}]
$$x^2\over1 - \frac23 x^2$$

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-4-21 13:39:30
hbghlyj 发表于 2023-4-21 13:31
PadeApproximant[Tan[x]^2,{x,0,{2,2}}]
$$x^2\over1 - \frac23 x^2$$
wolframalpha.com  就是 mathematica 的在线处理吧?MMA 也太强了,一行命令的事儿

Comment

还是有点儿差别嘀  Posted at 2023-4-21 14:08
想表达的是 web 版,当时  Posted at 2023-4-21 17:25
isee=freeMaths@知乎

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-21 15:47:06
isee 发表于 2023-4-21 06:39
mathematica 的在线处理吧?
在线Mathematica可以用Tio.runWolfram Cloud

手机版Mobile version|Leisure Math Forum

2025-4-21 01:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list