Forgot password?
 Register account
View 2442|Reply 34

[不等式] 对数平均的一个不等式的证明

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2023-10-24 15:50 |Read mode
Last edited by hbghlyj 2025-3-24 15:43若 $b>a>0$,记 $G=\sqrt{ab},A=\dfrac{a+b}{2},L=\dfrac{b-a}{\ln b-\ln a}$,求证:

(1)若 $\lambda \leqslant \frac{2}{3},k>0$,则 $L^k<\lambda G^k+(1-\lambda)A^k$;

(2)若 $\lambda \geqslant 1,k>0$,则 $L^k>\lambda G^k+(1-\lambda)A^k$。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-10-27 14:47
Last edited by kuing 2023-11-6 03:11(1)反例:`\lambda=2/3`, `k=1/2`, `a=1`, `b=2`;

(2)显然成立。
因为 `\RHS=\lambda(G^k-A^k)+A^k` 关于 `\lambda` 递减,所以只需证 `\lambda=1` 时,此时即 `L^k>G^k`,显然成立。

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2023-10-27 15:07
Last edited by hbghlyj 2025-3-22 09:31
kuing 发表于 2023-10-27 06:47
(1)反例:`\lambda=2/3`, `k=1/2`, `a=1`, `b=2`;

(2)显然成立。
(1)是否还有其他反例?

是否可以修改 `\lambda` 或 `k` 的范围使之成立?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-10-27 15:12
Last edited by kuing 2023-11-6 03:24我没兴趣搞,你自己玩吧。
光看(2)我就不看好这命题,由上面的证明可知 RHS 比 G^k 还小,写出来除了吓人以外还有啥意义?

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2023-10-28 11:05
Last edited by hbghlyj 2025-3-22 09:04有人给我发来(1)的以下证明,大家看看问题出在哪?
定理 设 $\lambda \leqslant \frac{2}{3}, s>0$,则
\[
L^s<\lambda G^s+(1-\lambda) A^s
\]
引理 设 $x>0$,则 $1<\frac{\operatorname{sh} x}{x}<\operatorname{ch} x$.
证明 不妨设 $b>a$,令 $t=\ln b-\ln a$,则 $\mathrm{e}^t=\frac{b}{a}>1, t>0$,所以
\[
\begin{aligned}
& L^s-\lambda G^s-(1-\lambda) A^s \\
&= \left(\frac{b-a}{\ln b-\ln a}\right)^s-\lambda(\sqrt{a b})^s+(\lambda-1)\left(\frac{a+b}{2}\right)^s \\
&= a^s\left[\left(\frac{\frac{b}{a}-1}{\ln \frac{b}{a}}\right)^s-\lambda\left(\sqrt{\frac{b}{a}}\right)^s+(\lambda-1)\left(\frac{1+\frac{b}{a}}{2}\right)^s\right] \\
&= a^s\left[\left(\frac{\mathrm{e}^t-1}{t}\right)^s-\lambda \mathrm{e}^{\frac{t}{2}}+(\lambda-1)\left(\frac{1+\mathrm{e}^t}{2}\right)^s\right] \\
&= a^s \mathrm{e}^{\frac{s t}{2}}\left[\left(\frac{\mathrm{e}^{\frac{t}{2}}-\mathrm{e}^{-\frac{t}{2}}}{t}\right)^s-\lambda+(\lambda-1)\left(\frac{\mathrm{e}^{\frac{t}{2}}+\mathrm{e}^{-\frac{t}{2}}}{2}\right)^s\right]\\
&=a^s \mathrm{e}^{r s}\left[\left(\frac{\mathrm{e}^x-\mathrm{e}^{-x}}{2 x}\right)^s-\lambda+(\lambda-1)\left(\frac{\mathrm{e}^x+\mathrm{e}^{-x}}{2}\right)^s\right]  (\text {作变换 } t=2 x)\\&=a^s \mathrm{e}^{x s}\left[\left(\frac{\operatorname{sh} x}{x}\right)^s-\lambda+(\lambda-1)(\operatorname{ch} x)^s\right]
\end{aligned}
\]
设 $f(x)=\left(\frac{\operatorname{sh} x}{x}\right)^s-\lambda+(\lambda-1)(\operatorname{ch} x)^s$, 其中 $s>0, x>0$.
由引理知, $1<\frac{\operatorname{sh} x}{x}<\operatorname{ch} x(x>0), x \operatorname{ch} x-\operatorname{sh}$ $x>0$,所以
\[
\begin{aligned}
f'(x)&= s\left(\frac{\operatorname{sh} x}{x}\right)^{s-1} \cdot \frac{x \operatorname{ch} x-\operatorname{sh} x}{x^2}+ s(\lambda-1)(\operatorname{ch} x)^{s-1} \cdot \operatorname{sh} x \\
&< s(\operatorname{ch} x)^{s-1} \cdot \frac{x \operatorname{ch} x-\operatorname{sh} x}{x^2}+ s(\lambda-1)(\operatorname{ch} x)^{s-1} \cdot \operatorname{sh} x \\
&= \frac{s(\operatorname{ch} x)^{s-1}}{x^2}\left[x \operatorname{ch} x-\operatorname{sh} x+(\lambda-1) x^2 \operatorname{sh} x\right] .
\end{aligned}
\]

\[
g(x)=x \operatorname{ch} x-\operatorname{sh} x+(\lambda-1) x^2 \operatorname{sh} x, x>0,
\]

\[
\begin{aligned}
g'(x)&= \operatorname{ch} x+x \operatorname{sh} x-\operatorname{ch} x+(\lambda-1)(2 x \operatorname{sh} x+x^2 \operatorname{ch} x) \\
&= x[(2 \lambda-1) \operatorname{sh} x+(\lambda-1) x \operatorname{ch} x] .
\end{aligned}
\]
对于(1),当 $\lambda \leqslant \frac{2}{3}$ 时,由引理知 $x \operatorname{ch} x>\operatorname{sh} x$,
又 $\lambda-1<0$,所以 $(\lambda-1) x \operatorname{ch} x<(\lambda-1) \operatorname{sh} x$,
又 $\operatorname{sh} x>\operatorname{sh} 0=0$,因此
\[
\begin{aligned}
g'(x) & <x[(2 \lambda-1) \operatorname{sh} x+(\lambda-1) \operatorname{sh} x] \\
& =(3 \lambda-2) x \operatorname{sh} x \leqslant 0.
\end{aligned}
\]
从而 $g(x)$ 在 $(0,+\infty)$ 上单调递减,所以 $g(x)<g(0)=0$,故 $f^{\prime}(x)<0$,从而 $f(x)$ 在 $(0,+\infty)$ 上单调递减.
显然,$\operatorname{ch} 0=1$.由洛必达法则,知
\[
\begin{aligned}
f(0) & =-\lambda+(\lambda-1) \times 1+\lim _{x \rightarrow 0}\left(\frac{\operatorname{sh} x}{x}\right)^s \\
& =-1+\left(\lim_{x \to 0}\operatorname{ch} x\right)^s=-1+1=0
\end{aligned}
\]
所以 $f(x)<f(0)=0$,故 $L^s<\lambda G^s+(1-\lambda) A^s$ .

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2023-10-28 11:08
Last edited by kuing 2023-11-6 03:16能否改为:若 $b>a>0$,记 $G=\sqrt{ab},A=\dfrac{a+b}{2},L=\dfrac{b-a}{\ln b-\ln a}$。

当 $\lambda \leqslant \frac{2}{3},k\geqslant1$,则 $L^k<\lambda G^k+(1-\lambda)A^k$?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-10-28 12:43
Last edited by hbghlyj 2025-5-14 22:37
lemondian 发表于 2023-10-28 03:08
能否改为:若 $b>a>0$,记 $G=\sqrt{ab},A=\dfrac{a+b}{2},L=\dfrac{b-a}{\ln b-\ln a}$。

当 $\lambda \l ...
将 `k>0` 改成 `k\geqslant1` 可以是可以,但意义也不大,因为一个幂平均就把 `k` 整没了,理由如下。

首先右边 `=\lambda(G^k-A^k)+A^k` 关于 `\lambda` 递减,所以只需考虑 `\lambda=2/3` 的情形,即只需证
\[L^k<\frac23G^k+\frac13A^k,\]
由幂平均有
\[\frac23G^k+\frac13A^k\geqslant\left(\frac23G+\frac13A\right)^k,\]
于是只需证
\[L<\frac23G+\frac13A,\tag{*}\]
这是熟知的(不熟知也无所谓,反正换元求导易证)。

所以这改成 `k\geqslant1` 的话指数就显得多余了,重点还是式 (*)。

Comment

加权幂平均不等式是不是要求权都是正数?那这里的‘’入‘’可能是负的呢  Posted 2023-11-2 00:14
回上一点评:两步换一下就行了,已修改。  Posted 2023-11-2 00:26

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-10-30 17:07
Last edited by hbghlyj 2025-3-22 09:31
lemondian 发表于 2023-10-28 03:05
有人给我发来(1)的以下证明,大家看看问题出在哪?
截图那个证明的问题出在这段:
由引理知, $1<\frac{\operatorname{sh} x}{x}<\operatorname{ch} x(x>0), x \operatorname{ch} x-\operatorname{sh}$ $x>0$,所以
\[
\begin{aligned}
f'(x)&= s\left(\frac{\operatorname{sh} x}{x}\right)^{s-1} \cdot \frac{x \operatorname{ch} x-\operatorname{sh} x}{x^2}+ s(\lambda-1)(\operatorname{ch} x)^{s-1} \cdot \operatorname{sh} x \\
&< s(\operatorname{ch} x)^{s-1} \cdot \frac{x \operatorname{ch} x-\operatorname{sh} x}{x^2}+ s(\lambda-1)(\operatorname{ch} x)^{s-1} \cdot \operatorname{sh} x \\
&= \frac{s(\operatorname{ch} x)^{s-1}}{x^2}\left[x \operatorname{ch} x-\operatorname{sh} x+(\lambda-1) x^2 \operatorname{sh} x\right] .
\end{aligned}
\]
当 `s<1` 时,指数为负,方向就不同了。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-10-30 17:27
Last edited by kuing 2023-11-6 03:31还是让这帖有意义一点,提个猜想吧,事关我发现情况(1)在 k=0.8 时似乎还是成立的,而且再小一点就不行,于是提出:

猜想:若 $b>a>0$,记
\[G=\sqrt{ab},~A=\frac{a+b}{2},~L=\frac{b-a}{\ln b-\ln a},\]
则有
\[L^{4/5}<\frac23G^{4/5}+\frac13A^{4/5},\]
并且指数 `4/5` 不能再小。

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2025-3-22 09:08
等价于,$\forall x \ge 1,$
$$\frac{x-1}{\ln x}\leq \left(\frac{2}{3}x^{2/5} + \frac{1}{3}\left(\frac{x+1}{2}\right)^{4/5}\right)^{5/4}
$$
$$\iff\ln x \ge \frac{x - 1}{\left(\frac{2}{3}x^{2/5} + \frac{1}{3}\left(\frac{x+1}{2}\right)^{4/5}\right)^{5/4}}.$$
令 $y := \sqrt[5]{x}$,只需证明,$\forall y \ge 1,$
$$5\ln y \ge \frac{y^5 - 1}{\left(\frac{2}{3}y^2 + \frac{1}{3}\left(\frac{y^5+1}{2}\right)^{4/5}\right)^{5/4}}. \tag{1}$$
我们使用以下不等式
$$\frac{2}{3}y^2 + \frac{1}{3}\left(\frac{y^5+1}{2}\right)^{4/5} \ge \left(\frac{7y^3 + 5y^2 + 5y + 7}{12y^2 + 12}\right)^4, \quad \forall y \ge 1. \tag{2}$$
如何取对数后求导验证 (2)?

为了证明 (1),利用 (2),只需证明,$\forall y \ge 1,$
$$5\ln y \ge \frac{y^5 - 1}{\left(\frac{7y^3 + 5y^2 + 5y + 7}{12y^2 + 12}\right)^5}. \tag{3}$$
求导验证 (3)

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-3-23 14:28
  1. PolynomialSumOfSquaresList[
  2.    117649 - 34056 x + 430842 x^2 - 144936 x^3 + 656511 x^4 -
  3.     263376 x^5 + 686572 x^6 - 263376 x^7 + 656511 x^8 - 144936 x^9 +
  4.     430842 x^10 - 34056 x^11 + 117649 x^12, x]^2 // Factor
  5. Total[%]
Copy the Code
$$\small
\begin{align*}
&117649 x^{12}-34056 x^{11}+430842 x^{10}-144936 x^9+656511 x^8-263376 x^7+686572 x^6-263376 x^5+656511 x^4-144936 x^3+430842 x^2-34056 x+117649\\
=&\frac{3827195475506240542540249542086085248107854048686813522 x^{12}}{57254289709394479480245892669765338612013442616575}\\
+&\frac{9 (662462949250363209148237497652477804543581625 x-13551311173821178575206128442548009138938092927)^2 x^{10}}{3004229167608714630097579754738970655181042939507189419667104047149233890190377445298995}\\
+&\frac{\left(199082689927421599204103085187048343424 x^2+145556580719194295843391347534197131525 x-1311792174375612961065529663070601519365\right)^2 x^8}{1148976180941596564284122643284280202443359760320797060672827406950017400}\\
+&\frac{\left(62849870139606670206119868 x^3-1284206304145321533757248135 x^2-449469902398646887550499135 x+3199221211941880016379794942\right)^2 x^6}{3314275005231690947183193564339372019504677854256}\\
+&\frac{\left(793350455971484340 x^4+958483198593027735 x^3-11734490567154087977 x^2-1887295651822285302 x+12789667441719277928\right)^2 x^4}{57356359989693463742106627804240}\\
+&\frac{\left(203147114160 x^5-7407068161095 x^4-2990465060037 x^3+29754738470548 x^2+2575424054268 x-17938342885320\right)^2 x^2}{246920087947456483560}\\
+&\frac{\left(2070216 x^6+1427088 x^5-28642796 x^4-6004908 x^3+51176619 x^2+1992276 x-13764933\right)^2}{1610497161}
\end{align*}
$$
Wir müssen wissen, wir werden wissen.

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-23 14:43
Aluminiumor 发表于 2025-3-23 14:28
PolynomialSumOfSquaresList
PolynomialSumOfSquaresList
查了下,是 13.0 版本推出的命令,真是个好命令
我的 mathematica 还是 7.0 😭

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2025-3-23 15:03
Last edited by hbghlyj 2025-3-24 05:11
kuing 发表于 2023-10-30 09:27
指数 `4/5` 不能再小
$$f(x) := \frac23 x^{r/2} + \frac13 \left(\frac{x + 1}{2}\right)^r - \left(\frac{x - 1}{\ln x}\right)^r.$$
$$f(x)\ge0,\forall x>1\implies\lim_{x\to 1^+} \frac{f(x)}{(x-1)^4} = \frac{1}{2880}r(5r-4)\ge0\implies r\ge\frac45$$

Comment

这样是不是能说明:指数4/5不能再小?  Posted 2025-3-24 09:41

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-23 15:28
hbghlyj 发表于 2025-3-22 11:33
(3)式 LHS − RHS 求导后是 $5 (y - 1)^6 (117649 y^{12} - 34056 y^{11} + 430842 y^{10} - 144936 y^9  ...

\[t=y+\frac1y-2\geqslant0,\]

\begin{align*}
&\frac1{y^6}(117649y^{12}-34056y^{11}+430842y^{10}-144936y^9+656511y^8-263376y^7\\
&+686572y^6-263376y^5+656511y^4-144936y^3+430842y^2-34056y+117649)\\
={}&117649t^6+1377732t^5+6443328t^4+15286528t^3+19054080t^2+11335680t+2211840\\
>{}&0.
\end{align*}

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-23 18:56
hbghlyj 发表于 2025-3-23 15:42
请问(2)如何证明?
\[\iff\frac23+\frac13\left(\frac{y^{5/2}+y^{-5/2}}2\right)^{4/5}\geqslant\left(\frac{7y^{3/2}+5y^{1/2}+5y^{-1/2}+7y^{-3/2}}{12y+12y^{-1}}\right)^4,\]
令 `t=y^{1/2}+y^{-1/2}`,变成
\[\frac23+\frac13\left(\frac{t(5-5t^2+t^4)}2\right)^{4/5}\geqslant\left(\frac{t(7t^2-16)}{12(t^2-2)}\right)^4,\]
再令 `u=t^2-4`, `u\geqslant0`,变成
\[\frac23+\frac13\left(\frac{(4+u)^2(1+3u+u^2)^4}{2^4}\right)^{1/5}\geqslant\frac{(4+u)^2(12+7u)^4}{12^4(2+u)^4},\]
emmm.... 还是暴力吧,开挂计算
\[\frac{(4+u)^2(1+3u+u^2)^4}{2^4}-\left(\frac{3(4+u)^2(12+7u)^4}{12^4(2+u)^4}-2\right)^5,\]
发现所有系数为正😄即得证。

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2025-3-24 05:00
kuing 发表于 2025-3-23 06:43
PolynomialSumOfSquaresList
“最大的$t$使$p-t$可表为SumOfSquares”中,这个$t$不一定是$p$的最小值,只是一个下界,可能比最小值更小。

Example 3$$p = x^4+x^2-3 x^2 y^2+y^6$$最小值是0,当$x=y=-1$.

求最大的$t$使$p-t$可表为SumOfSquares?
233536wiq6z462rbkbz5la[1].png
\[p=x^4+x^2-3 x^2 y^2+y^6+\frac{729}{4096}=\left(x^2-\frac{3 y^2}{2}+\frac{27}{64}\right)^2+\frac{5 x^2}{32}+\left(\frac{9 y}{8}-y^3\right)^2\]
为什么最大的$t$是 $-\frac{729}{4096}$

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2025-3-24 05:01
设 $p = x^4+x^2-3 x^2 y^2+y^6$
如何证明“使得 $p-t$ 可表示为多项式的平方和”的 $t$ 的最大值为 $-\frac{729}{4096}$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-24 15:37
关于 17# 中间的分式 `\frac{7y^3 + 5y^2 + 5y + 7}{12y^2 + 12}` 的来由:
在 MMA 输入
  1. PadeApproximant[(2/3 y^2 + 1/3 ((y^5 + 1)/2)^(4/5))^(1/4), {y, 1, {3, 2}}] // Simplify
Copy the Code
输出就是 `\frac{7+5 y+5 y^2+7 y^3}{12+12 y^2}`,即它是 `\sqrt[4]{\frac23y^2+\frac13\bigl(\frac{y^5+1}2\bigr)^{4/5}}` 的 `(3,2)`-Pade 逼近。

Comment

也就说:30#的证明,用Pade 逼近来说明就可以了?  Posted 2025-3-24 15:55
不能,Pade 逼近不确保两者之差非负,还是得证明的  Posted 2025-3-24 16:02

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2025-5-6 22:14
Last edited by hbghlyj 2025-5-12 02:05
kuing 发表于 2023-10-30 17:27
还是让这帖有意义一点,提个猜想吧,事关我发现情况(1)在 k=0.8 时似乎还是成立的,而且再小一点就不行, ...
别人发的,看看这个证明可以不?
定理 6 $L^{4 / 5}<\frac{2}{3} G^{4/5}+\frac{1}{3} A^{4/5}$.
我们首先证明一个引理。
引理 2 设 $h(x)=3^{5 /4}\left(1+2 x^6\right)-(2+x^4)^{9/4} x$,则当 $x>1$ 时,$h(x)<0$.
证明 令 $F(x)=243\left(1+2 x^6\right)^4-(2+x^4)^9 x^4$,
则当 $x>1$ 时,$h(x)<0 \Leftrightarrow F(x)<0$.
直接对 $F(x)$ 因式分解得
\begin{multline*}
F(x)=-(x - 1)^3 (x + 1)^3 (x^{34} + 3 x^{32} + 24 x^{30} + 64 x^{28} + 267 x^{26} + 633 x^{24} + 1834 x^{22} + 3870 x^{20} + \\4869 x^{18} + 4831 x^{16} + 7788 x^{14} + 5964 x^{12} + 4735 x^{10} + 4101 x^8 + 2838 x^6 + 946 x^4 + 729 x^2 + 243)
\end{multline*}
显然,当 $x>1$ 时,$F(x)<0$,证毕.
定理 6 的证明
(1)转化问题,令 $u=\frac{b}{a}$,则
\[
L^{4 / 5}<\frac{2}{3} G^{4 / 5}+\frac{1}{3} A^{4 / 5} \stackrel{齐次化}{\Leftrightarrow}\left(\frac{u-1}{\ln u}\right)^{4/5}< \frac{2}{3} u^{2 / 5}+\frac{1}{3}\left(\frac{1+u}{2}\right)^{4/5}, u>1
\]
再令 $v=\ln u$,则问题转化为证明:当 $v>0$ 时,
\[
\left(\frac{e^v-1}{v}\right)^{4/ 5}<\frac{2}{3} e^{2 v / 5}+\frac{1}{3}\left(\frac{1+e^v}{2}\right)^{4/ 5} .
\]
再将两边除以 $e^{2v / 5}$,则问题进一步转化为证明:当 $v>0$ 时,
\[
\left(\frac{e^{v / 2}-e^{-v/ 2}}{v}\right)^{4 / 5}<\frac{2}{3}+\frac{1}{3}\left(\frac{e^{v / 2}+e^{-v / 2}}{2}\right)^{4/ 5} .
\]
再令 $t=v / 2$,则问题转化为证明:当 $t>0$ 时,
\[
\left(\frac{\sinh t}{t}\right)^{4 / 5}<\frac{2+\left(\cosh t\right)^{4/ 5}}3.
\]
(2)令 $f(t)=\frac{\sinh t}{\left[2+(\cosh t)^{4/5}\right]^{5/4}}-\frac{t}{3^{5/4}}$,
我们只需证明当 $t>0$ 时,$f(t)<0$,实际上,
\[
f'(t)= \frac{3^{\frac{5}{4}}\left[1+2(\cosh t)^{\frac{6}{5}}\right]}{3^{\frac{5}{4}}\left[2+(\cosh t)^{\frac{4}{5}}\right]^{\frac{9}{4}}(\cosh t)^{\frac{1}{5}}}-\frac{\left[2+(\cosh t)^{\frac{4}{5}}\right]^{\frac{9}{4}}(\cosh t)^{\frac{1}{5}}}{3^{\frac{5}{4}}\left[2+(\cosh t)^{\frac{4}{5}}\right]^{\frac{9}{4}}(\cosh t)^{\frac{1}{5}}} .
\]
由引理 2 知,当 $t>0$ 时,有
\[
f'(t)=\frac{h(\sqrt[5]{\cosh t})}{3^{5 / 4}\left[2+(\cosh t)^{4/ 5}\right]^{9/ 4}(\cosh t)^{1/5}}<0
\]
因此,当 $t>0$ 时,有
\[
f(t)<f(0)=0
\]
证毕.

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2025-5-6 22:15
Last edited by hbghlyj 2025-5-7 05:00
lemondian 发表于 2025-5-6 22:14
别人发的,看看这个证明可以不?
然后还给出了这个
定理 5 $\sqrt{L}<\frac{3}{5} \sqrt{G}+\frac{2}{5} \sqrt{A}$ .
我们首先证明一个引理。
引理 1 设 $g(x)=50+75 x^3-(3+2 x)^3 x$,
则当 $x>1$ 时,$g(x)<0$.
证明 首先,因式分解可得
\[
g(x)=(1-x)(50+23 x-31 x^2+8 x^3) .
\]
(1)当 $1<x \leqslant 5$ 时,
\[
50+23 x-31 x^2+8 x^3>9 x+23 x-32 x^2+8 x^3=8 x(x-2)^2 \geqslant 0
\]
(2)当 $x>5$ 时.
\[50+23 x-31 x^2+8 x^3=50+x(x-1)(8 x-23)>50>0\]
因此,当 $x>1$ 时,$g(x)<0$ .证毕.
定理 5 的证明
(1)转化问题:令 $u=\frac{b}{a}$,则
\[
\sqrt{L}<\frac{3}{5} \sqrt{G}+\frac{2}{5} \sqrt{A} \stackrel{齐次化}{\Leftrightarrow} \sqrt{\frac{u-1}{\ln u}}<\frac{3}{5} u^{1 / 4}+ \frac{2}{5} \sqrt{\frac{1+u}{2}}, u>1 .
\]
再令 $v=\ln u$,则问题转化为证明;当 $v>0$ 时,
\[
\sqrt{\frac{e^v-1}{v}}<\frac{3}{5} e^{v / 4}+\frac{2}{5} \sqrt{\frac{1+e^v}{2}} .
\]
再将两边除以 $e^{v/4}$,则问题进一步转化为证朋:当 $v>0$ 时,
\[
\sqrt{\frac{e^{v / 2}-e^{-v / 2}}{v}}<\frac{3}{5}+\frac{2}{5} \sqrt{\frac{e^{v / 2}+e^{-v / 2}}{2}} .
\]
再令 $t=v / 2$,则问题转化为证明:当 $t>0$ 时,
\[
\sqrt{\frac{\sinh t}{t}}<\frac{3+2 \sqrt{\cosh t}}{5}
\]
(2)令 $f(t)=\frac{\sinh t}{(3+2 \sqrt{\cosh t})^2}-\frac{t}{25}$,
我们只需证明当 $t>0$ 时,$f(t)<0$.实际上,
\[
f'(t)=\frac{50+75 \cosh t \sqrt{\cosh t}-(3+2 \sqrt{\cosh t})^3 \sqrt{\cosh t}}{25(3+2 \sqrt{\cosh t})^2 \sqrt{\cosh t}} .
\]
由引理1知,当 $t>0$ 时,有
\[
f'(t)=\frac{g(\sqrt{\cosh t})}{25(3+2 \sqrt{\cosh t})^2 \sqrt{\cosh t}}<0 .
\]
因此,当 $t>0$ 时,有
\[
f(t)<f(0)=0 .
\]
证毕.

Mobile version|Discuz Math Forum

2025-6-5 22:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit