Forgot password
 Register account
View 4195|Reply 10

[不等式] 对数平均不等式

[Copy link]

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2013-10-1 11:22 |Read mode
Last edited by hbghlyj 2025-3-21 05:40\begin{aligned}
& \frac{a \ln b+b \ln a}{a+b} \leq \ln \frac{a+b}{2} \leq \frac{a \ln a+b \ln b}{a+b} \\
& \frac{a^x \ln \left(a^x\right)+b^x \ln \left(b^x\right)}{2} \geq \frac{a^x+b^x}{2} \ln \left(\frac{a^x+b^x}{2}\right)
\end{aligned}

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2013-10-1 11:46
这个题很面善,我肯定在哪见过…
除了不懂,就是装懂

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-1 11:57
琴生就好了啊
第二个图片多余

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-1 12:00
左边:$\ln x$ 上凸,故
\[\frac a{a+b}\ln b+\frac b{a+b}\ln a\leqslant\ln\left( \frac a{a+b}\cdot b+\frac b{a+b}\cdot a \right)=\ln\frac{2ab}{a+b}\leqslant\ln\frac{a+b}2;\]

右边:$x\ln x$ 下凸,故
\[\frac{a\ln a+b\ln b}2\geqslant\frac{a+b}2\ln\frac{a+b}2.\]

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2013-10-1 12:28
回复 4# kuing
搜神,给个出处,我老是觉得在哪见过,可是它老是不记得我…
除了不懂,就是装懂

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-10-1 15:43
回复 5# 睡神


    你说的是这个吧:
(2004全国卷二)已知函数$f(x)=\ln(x+1)-x,g(x)=x\ln x$.
(1)求函数$f(x)$的最大值;
(2)设$0<a<b$,证明:$0<g(a)+g(b)-2g\left(\frac{a+b}{2}\right)<(b-a)\ln 2$.
kuing肯定懒得记这种高考题嘛,。。。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-1 15:48
回复 6# Tesla35

这个跟1#的不一样吧,难也难些。
PS、呃,你全部换行都用 \\ ?

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-10-1 15:52
回复 7# kuing


    右边一样。哈哈
那换行用啥?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-1 15:52
回复 8# Tesla35

空行

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2013-10-1 17:26
原题好像也在哪见过,非常的面熟…或许在看琴森不等式资料时见过,因为我看到这个第一反应也是往琴森想…哎…我这笨脑袋,都不装东西的…
除了不懂,就是装懂

4

Threads

14

Posts

0

Reputation

Show all posts

yhg1970 posted 2014-11-2 00:34
睡神是不是想到了对数平均不等式,网上有个对数平均-算术平均不等式链
另外此不等式的几何意义应该用定比分点坐标公式分析,不妨设b≥a,将右边的分式分子分母同除a,左边的分式分子分母同除b即可。
剪贴板-1.jpg

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 11:08 GMT+8

Powered by Discuz!

Processed in 0.015489 seconds, 34 queries