Forgot password?
 Create new account
View 119|Reply 1

矩阵的Real canonical form

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-5-13 17:23:11 |Read mode
矩阵$A$转换为实规范形\[A=\begin{pmatrix}
0 & 0 & 0&-1\\
1 & 0 & 0& 0\\
0 & 1 & 0 & 0\\
0& 0& 1& 0
\end{pmatrix}\]
$\chi_A(\lambda)=\lambda^4+1\implies\lambda=\frac{\pm1\pm i}{\sqrt2}$
$$\therefore A\sim\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\end{pmatrix}$$

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-13 17:37:39

困惑:

$A$转换为实规范形(Real canonical form)与$A$转换为有理规范形(Frobenius normal form)相同吗?

手机版Mobile version|Leisure Math Forum

2025-4-20 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list