Forgot password?
 Create new account
View 104|Reply 2

[几何] 保持单位圆内部的Möbius变换

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-5-26 05:11:42 |Read mode
Last edited by hbghlyj at 2023-5-26 10:55:00设$D$为单位圆内部,将$\alpha∈D$映射到0的从$D$到$D$双射的Möbius变换为$e^{i\theta}\frac{z-\alpha}{\bar \alpha z-1},\theta\in\Bbb R$
证明: hyper-trans.pdf Theorem 17.10.   $_\square$
可分解为:
关于$\bar\alpha^{-1}$为中心, $\sqrt{|\alpha|^{-2}-1}$为半径的圆反演再关于过0的直线反射.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-26 16:13:37
显然,两个$D\to D$的Möbius变换的复合仍是$D\to D$的Möbius变换,所以仍具有此形式.
$D\to D$的Möbius变换构成群Aut(D)
计算验证:
设$\alpha,\beta\in D,|\lambda|=|\mu|=1,$
$$T_{\alpha,\mu}=\frac{\mu(z-\alpha)}{\bar \alpha z-1},\quad T_{\beta,\lambda}=\frac{\lambda(z-\beta)}{\bar \beta z-1}$$
复合映射$T_{\alpha,\mu}\circ T_{\beta,\lambda}=T_{\gamma,\nu}$
$$\mu\frac{\frac{\lambda(z-\beta) }{z \bar\beta -1}-\alpha }{\frac{\bar\alpha \lambda (z-\beta )}{z\bar \beta-1}-1}=\nu\frac{z-\gamma}{\bar\gamma z-1}$$
$\gamma=\frac{\alpha -\beta  \lambda }{\alpha\bar  \beta -\lambda }$
$\nu=\frac{\mu  \left(\lambda -\alpha \bar \beta \right)}{\beta  \lambda \bar \alpha -1}$
  1. (μ*(-α + ((z - β)*λ)/(-1 + z*Conjugate[β])))/(-1 + ((z - β)*λ*Conjugate[α])/(-1 + z*Conjugate[β])) == (μ*(λ - α*Conjugate[β])*(z - (α - β*λ)/(-λ + α*Conjugate[β])))/((-1 + β*λ*Conjugate[α])*(-1 + (z*(Conjugate[α] - Conjugate[β]/λ))/(-λ^(-1) + β*Conjugate[α]))) // FullSimplify
  2. True
Copy the Code

How to "Copy as Unicode" from a Notebook?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-26 16:39:18
当$\lambda=1$时$\gamma=T_{\alpha,1}(\beta)$
为什么会这样呢

手机版Mobile version|Leisure Math Forum

2025-4-20 22:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list