|
Author |
hbghlyj
Posted at 2023-5-26 16:13:37
显然,两个$D\to D$的Möbius变换的复合仍是$D\to D$的Möbius变换,所以仍具有此形式.
$D\to D$的Möbius变换构成群Aut(D)
计算验证:
设$\alpha,\beta\in D,|\lambda|=|\mu|=1,$
$$T_{\alpha,\mu}=\frac{\mu(z-\alpha)}{\bar \alpha z-1},\quad T_{\beta,\lambda}=\frac{\lambda(z-\beta)}{\bar \beta z-1}$$
复合映射$T_{\alpha,\mu}\circ T_{\beta,\lambda}=T_{\gamma,\nu}$
$$\mu\frac{\frac{\lambda(z-\beta) }{z \bar\beta -1}-\alpha }{\frac{\bar\alpha \lambda (z-\beta )}{z\bar \beta-1}-1}=\nu\frac{z-\gamma}{\bar\gamma z-1}$$
$\gamma=\frac{\alpha -\beta \lambda }{\alpha\bar \beta -\lambda }$
$\nu=\frac{\mu \left(\lambda -\alpha \bar \beta \right)}{\beta \lambda \bar \alpha -1}$
- (μ*(-α + ((z - β)*λ)/(-1 + z*Conjugate[β])))/(-1 + ((z - β)*λ*Conjugate[α])/(-1 + z*Conjugate[β])) == (μ*(λ - α*Conjugate[β])*(z - (α - β*λ)/(-λ + α*Conjugate[β])))/((-1 + β*λ*Conjugate[α])*(-1 + (z*(Conjugate[α] - Conjugate[β]/λ))/(-λ^(-1) + β*Conjugate[α]))) // FullSimplify
- True
Copy the Code
How to "Copy as Unicode" from a Notebook? |
|