|
Last edited by hbghlyj at 2024-3-31 17:04:00直线$L$
圆$C$
透视变换$φ:C\to L$
$L$上的射影变换$g∈\operatorname{Stab}L$
$C$上的射影变换$f=φgφ^{-1}∈\operatorname{Stab}C$
$L$和$C$都(通过有理参数化)同构于$\mathbb{RP}^1$,考虑$PGL(2,\mathbb R)$在$L$和$C$上的作用:
用$\sim$表示在$\mathbb R$上相似,二阶实矩阵有3个real canonical form.
$\mathbb R^2$的等距即旋转和反射,容易想象,以下都用某个等距(和它导出的映射)作例子.
圆上的等距只有关于圆心旋转、关于通过圆心的直线反射.
直线上的等距只有平移、关于垂线反射.
因此,把这4个例子归入3种real canonical form下:
在2个不动点的情况,直线和圆都易举例:$f$为反射和它导出的$g=φ^{-1}fφ$、$g$为反射和它导出的$f=φgφ^{-1}$
在1个不动点的情况,直线较易举例: $g$为旋转和它导出的$f=φgφ^{-1}$, 但不存在$f$为等距的例子.
在0个不动点的情况,圆较易举例: $f$为旋转和它导出的$g=φ^{-1}fφ$, 但不存在$g$为等距的例子.
2个不动点$φ\sim\pmatrix{\lambda_1\\&\lambda_2}$
$f$为等距:
$f$为关于通过圆心的一条直线反射.
$f$的2个不动点是$C$与对称轴的交点.
$g$为等距:
$g$为关于$L$的一条垂线反射.
$g$的2个不动点是$L$与对称轴的交点和$L$的无穷远点.
1个不动点$φ\sim\pmatrix{\lambda_1&1\\0&\lambda_1}$
$g$为等距:
$g$为沿$L$的平移
按$f=φgφ^{-1}$导出的$f$如图所示:

$g$的1个不动点是$A=[0:0:1]$
$A_1,A_2,A_3,A_4\dots$为$L$上的等距离的点.
平移$g:A_1\mapsto A_2\mapsto A_3\mapsto A_4\dots$趋于$[0:0:1]$
$f$的1个不动点是$B=φ(A)$
按$f=φgφ^{-1}$导出的$f:B_1\mapsto B_2\mapsto B_3\mapsto B_4\dots$趋于$B$,但走得“越来越慢”.
0个不动点(不动点是虚点) $φ\sim\pmatrix{a&b\\-b&a}$
旋转$f:B_1\mapsto B_2\mapsto B_3\mapsto B_4\dots$
按$g=φ^{-1}fφ$导出的$g:A_1\mapsto A_2\mapsto A_3\mapsto A_4\dots$从最左端开始走得“越来越慢”后又“越来越快”.
 |
|