Forgot password?
 Create new account
View 110|Reply 1

压缩映射$A$, $σ_1(A)≤1$, $H(A)=I$, 则$A=I$

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-6-9 03:59:41 |Read mode
Topics in matrix analysis by Horn, Roger A
3.1 The singular value decomposition
page 157
原图
25. Suppose $A \in M_n$ and $\sigma_1(A) \leq 1$, that is, $A$ is a contraction. If $\mathrm{H}(A) \equiv\frac{1}{2}\left(A+A^*\right)=I$, show that $A=I$.

其中H(A)为Hermitian Part

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-6-10 21:31:34
此贴记号,  $A+A^\ast =2I$ 即
$$
I=\dfrac12R(\Theta^\ast +\Theta)=R\cdot \mathrm{Re}(\Theta).
$$
由于 $\mathrm{Re}(\Theta)$ 各项小于等于 $1$, 从而 $R$ 与 $\Theta$ 只能为 $\{\pm 1\}^n$-矩阵. 简单讨论知 $R\Theta=I$.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list