Forgot password?
 Create new account
View 128|Reply 1

当$z→∞$时$f(z)∼z^{-1}$则$∫_{γ(0,R)}f→1$

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-6-11 02:16:37 |Read mode
Last edited by hbghlyj at 2023-6-12 01:31:00全纯函数$f:\{z:\abs z>1\}\to\mathbb C$满足$$\lim_{z\to\infty}z\cdot f(z)=1$$是否有$$\lim_{R\to\infty}\frac1{2\pi i}\int_{|z|=R}f=1$$

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-6-11 13:31:31
记 $g(z)=f(z^{-1})$, 则
\[
\lim_{z\to 0}z^{-1}g(z)=1.
\]
此时有
\[
\int_{|z|=R}f(z)\mathrm dz=\int_{|w|=R^{-1}}g(w)\mathrm d(w^{-1})=\int_{|w|=R^{-1}}\dfrac{-w^{-1}g(w)}w\mathrm dw.
\]
此处绕圈方向反向了, 若固定绕圈方向, 则上述积分等价于
\[
\lim_{\epsilon\to 0^+}\int_{|w|=\epsilon}\dfrac{w^{-1}g(w)}w\mathrm dw=\lim_{\epsilon\to 0^+}\int_{|w|=\epsilon}\dfrac{1}w\mathrm dw.
\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list