Forgot password
 Register account
View 245|Reply 1

[几何] 三角形内随机四个点,没有一点落在其他三个点三角形内

[Copy link]

3175

Threads

7937

Posts

48

Reputation

Show all posts

hbghlyj posted 2023-6-17 16:47 |Read mode
Sylvester's Four-Point Problem
One Thousand Exercises in Probability: Third Edition - Page 55 · 2020 · Geoffrey Grimmett, ‎David Stirzaker
Probability and Random Processes - Page 139 · 2001 · ‎Geoffrey Grimmett, ‎David Stirzaker

12. Sylvester's problem. If four points are picked independently at random inside the triangle ABC, show that the probability that no one of them lies inside the triangle formed by the other three is $2\over3$
Screenshot 2023-06-17 at 09-42-13 One Thousand Exercises in Probability - Google Books.png

Outline #9 (Geometrical Probability)
The Historical Development of J. J. Sylvester's Four Point Problem Richard E. Pfiefer, Mathematics Magazine , Dec., 1989, Vol. 62, No. 5

假设 A、B 和 C 是构成三角形面积最大的三个点,那么在四个等面积三角形中的第四个点 D 只有落在原三角形$ABC$内时才会给出凹四边形——如图 2 所示。
Cayley 和 Sylvester 知道这个论证是不充分的,因为有可能通过同样好的论证获得不一致的结果 [18]。
Screenshot 2023-06-17 at 09-35-41 The Historical Development of J. J. Sylvester&.png

3175

Threads

7937

Posts

48

Reputation

Show all posts

original poster hbghlyj posted 2023-6-17 16:53
hbghlyj 发表于 2023-6-17 09:47
在四个等面积三角形中的第四个点 D 只有落在原三角形内时才会给出凹四边形
按照这个,没有一点落在其他三个点三角形内的概率是3/4,不是2/3?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-1 03:35 GMT+8

Powered by Discuz!

Processed in 0.023228 seconds, 33 queries