|
Last edited by hbghlyj 2023-8-5 23:56版本1
版本2
AOPS问题反馈
Github
下面开始习题:
$p = a + b, q = ab.$
The Basic Theory (Two variables)有2道习题:
- Which conditions (particularly, inequalities) should satisfy $p$ and $q$ for $a$ and $b$ to be real?
- Prove that only if $p$ and $q$ are non-negative real numbers which satisfy conditions from the previous problem then $a$ and $b$ are real and non-negative.
题1就是$p^2\ge4q$
题2就是由$p^2\ge4q$推出$a,b\inR$,然后容易由$a+b\ge0,ab\ge0$推出$a\ge0,b\ge0$.
1.5 The abc Method有3道题:
3.1. Let $a,b,c$ be positive reals such that $a+b\geq c,\:b+c\geq a$ and $c+a\geq b$. Prove that
$$
2a^2(b+c)+2b^2(c+a)+2c^2(a+b)\geq a^3+b^3+c^3+9abc
$$
Hint: Use the incircle substitution including the degenerate case.
3.1. 代换$x=b+c-a,y=c+a-b,z=a+b-c$
\begin{multline*}2a^2(b+c)+2b^2(c+a)+2c^2(a+b)-(a^3+b^3+c^3+9abc)\\=\frac14 (x^3+ y^3+ z^3 - x^2 y - x^2 z - x y^2 - x z^2 - y^2 z - y z^2 + 3 x y z )\ge0\end{multline*}即为Schurs Inequality $n=3$.
3.2.1. Express $s^k$ for $1\leq k\leq6$ in terms of $p,q,r$. You can check your expressions in Shortcuts
Hint: Express $(a+b+c),(a+b+c)^{2},(a+b+c)^{3}$, then can you continue?
\begin{gathered}\sum x=p \\ \sum x^2=p^2-2 q \\ \sum x^3=p^3-3 p q+3 r\end{gathered}
3.2.2. Let $a,b,c$ be real numbers such that$a+b+c=9$
$ab+bc+ca=24$ Prove that $16\leq abc\leq20$.
Prove moreover that for any $r\in[16,20]$ there exist real numbers $a,b,c$ such that$a+b+c=9$
$ab+bc+ca=24$
$abc =r$ Hint: Substitute the values in $T(p,q,r)$.
3.2.2. 将$p=9,q=24$代入Theorem 1.3.3 $r \in\left[\frac{9 p q-2 p^3-2 \sqrt{\left(p^2-3 q\right)^3}}{27}, \frac{9 p q-2 p^3+2 \sqrt{\left(p^2-3 q\right)^3}}{27}\right]$即可
3. Suppose $a,b,c$ are positive real numbers such that $abc=1$ and
\begin{aligned}\frac1a+\frac1b+\frac1c&=1=\frac1{ab}+\frac1{bc}+\frac1{ca}\end{aligned}Find the minimum value of $(a+1)(b+1)(c+1)$
Hint: Clear denominators.
3. $p=q=r=1\implies a,b,c$是方程$x^3-x^2+x-1=0$的根$\implies a=b=c=1,(a+1)(b+1)(c+1)=8$.岂不太简单了? |
|