Forgot password?
 Register account
View 1800|Reply 3

[不等式] 三元对称不等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-11-24 18:04 |Read mode
Last edited by hbghlyj 2023-8-5 23:12(1)$a,b,c\in\Bbb{R}^+$,a+b+c=3,求$(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)$的取值范围
(2)$a,b,c\in\Bbb{R}^+$,a+b+c=3,求$(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2)$的取值范围
答案为
最小值0,(a,b,c)=(3,0,0)的一个排列
(1)最大值12,(a,b,c)=(0,1,2)的一个排列
(2)最大值$\dfrac{2187}{64}$,(a,b,c)=$\left(0,\frac32,\frac32\right)$的一个排列

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-11-24 22:59
(1)不妨设 `a=\min\{a,b,c\}`,则
\begin{align*}
\text{原式}&\leqslant b^2(b^2-bc+c^2)c^2\\
&=\frac49\cdot\frac32bc\cdot\frac32bc\cdot(b^2-bc+c^2)\\
&\leqslant\frac49\cdot\frac1{27}\left( \frac32bc+\frac32bc+b^2-bc+c^2 \right)^3\\
&=\frac4{3^5}(b+c)^6\\
&\leqslant\frac4{3^5}(a+b+c)^6\\
&=12,
\end{align*}当 `a:b:c=0:1:2` 时取等。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-11-24 23:31
(2)不妨设 `c=\max\{a,b,c\}`,令
\[f(a,b,c)=(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2),\]则
\begin{align*}
&f(0,a+b,c)-f(a,b,c)\\
={}&ab\left( c^4-a^2b^2+(c^3-a^3)b+(c^3-b^3)a+\frac12c(2c-a-b)(2a^2+3ab+2b^2)+\frac12abc(a+b) \right)\\
\geqslant{}&0,
\end{align*}为方便书写记 `a+b=x`,则
\begin{align*}
f(a,b,c)&\leqslant f(0,x,c)\\
&=x^2(x^2+xc+c^2)c^2\\
&=\frac19\cdot3xc\cdot3xc\cdot(x^2+xc+c^2)\\
&\leqslant\frac19\cdot\frac1{27}(x^2+7xc+c^2)^3\\
&\leqslant\frac19\cdot\frac1{27}\left( \frac94(x+c)^2 \right)^3\\
&=\frac3{4^3}(a+b+c)^6\\
&=\frac{2187}{64},
\end{align*}当 `a=0`, `b=c` 时取等。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2019-11-24 23:59
回复 2# kuing
我用pqr方法得出取最值时a,b,c有1为0,然后求二元最值,是平方式

Mobile version|Discuz Math Forum

2025-5-31 11:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit