|
本帖最后由 hbghlyj 于 2023-8-8 16:05 编辑 Mathematical Gems III第44页
$$
\frac{n^2}{12}-\frac{1}{3}\le p_3(n)\le\frac{n^2}{12}+\frac{1}{4}.
$$ 证明:
从Ferrer图的转置,看出$p_3(n)$等于将$n$分成若干个$1$、若干个$2$、若干个$3$之和且至少有一个$3$的方法数.
把这个必须的$3$扣掉,$p_3(n)$就等于将$n-3$分成若干个$1$、若干个$2$、若干个$3$之和的方法数.
构造生成函数\[f(x)= \left(1+x+x^2+x^3+\cdots\right)\left(1+x^2+x^4+x^6+\cdots\right)\left(1+x^3+x^6+x^9+\cdots\right) .\]$p_3(n)$等于$f(x)$的$x^{n-3}$项的系数
\begin{aligned} f(x) & =(1-x)^{-1}\left(1-x^2\right)^{-1}\left(1-x^3\right)^{-1} \\ & =\frac{1}{(1-x)\left(1-x^2\right)\left(1-x^3\right)} .\end{aligned}部分分式,得\begin{aligned} f(x) & =\frac{1 / 6}{(1-x)^3}+\frac{1 / 4}{(1-x)^2}+\frac{1 / 4}{1-x^2}+\frac{1 / 3}{1-x^3} \\ & =\frac{1}{6}(1-x)^{-3}+\frac{1}{4}(1-x)^{-2}+\frac{1}{4}\left(1-x^2\right)^{-1}+\frac{1}{3}\left(1-x^3\right)^{-1} .\end{aligned}Therefore, the desired coefficient of $x^{n-3}$ is the sum of the coefficients of $x^{n-3}$ that are obtained from these four parts. But these may be extracted by straightforward applications of the binomial theorem. From the first part we get
\begin{aligned}
& \frac{1}{6} \cdot \frac{(-3)(-4) \cdots[-3-(n-3)+1]}{(n-3) !}(-1)^{n-3} \\
& =\frac{1}{6} \cdot \frac{3 \cdot 4 \cdots(n-1)}{(n-3) !}=\frac{1}{6} \cdot \frac{(n-2)(n-1)}{2} \text {, }
\end{aligned}and from the second part we similarly obtain $(1 / 4)(n-2)$.
In the third part, only even powers of $x$ occur, and we obtain the coefficient 0 if $n-3$ is odd, and $(1 / 4)(1)=1 / 4$ if $n-3$ is even. We may express this by saying that the coefficient is $(1 / 4) k$, where $k$ is either 0 or 1 . Similarly, in the final part, the coefficient is $(1 / 3) t$, where $t$ is either 0 or 1 . In these terms, then, we have
\begin{aligned}
p_3(n) & =\frac{1}{6} \cdot \frac{(n-1)(n-2)}{2}+\frac{1}{4}(n-2)+\frac{1}{4} k+\frac{1}{3} t \\
& =\frac{n^2-4+3 k+4 t}{12} .
\end{aligned}Now the most that $3 k+4 t$ can be is 7 and the least is 0 . Therefore, we have
$$
\frac{n^2-4}{12} \leq p_3(n) \leq \frac{n^2+3}{12},
$$
that is,
$$
\frac{n^2}{12}-\frac{1}{3} \leq p_3(n) \leq \frac{n^2}{12}+\frac{1}{4} .
$$ |
|