Forgot password?
 Create new account
View 181|Reply 3

$\binom{2n}n$求和

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-3-2 17:47:39 |Read mode
Hall and Knight - Higher Algebra page 497:
证明$$\sum_{i=1}^n\frac{1\cdot3\cdots(2i-3)}{i!}\left(\frac{1}{2}\right)^i=1-{1\cdot3\cdot5\cdot7 \ldots \ldots(2 n-1)\over2^nn}$$($i=1$时,空积为1)
Screenshot 2023-03-02 at 01-29-13 Try pandoc!.png

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-2 18:04:15
Catalan number的证明见过
The square root term can be expanded as a power series using the identity
$$\sqrt{1+y}=\sum _{n=0}^{\infty }{\frac {(-1)^{n+1}}{4^{n}(2n-1)}}{2n \choose n}y^{n}$$
和Catalan number的母函数$c(x)=\sum _{n=0}^{\infty }{2n \choose n}{\frac {x^{n}}{n+1}}.$
不知是否有用

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-3-2 18:11:40
利用关系
\[
\binom{1/2}n=\frac{(-1)^{n-1}}{2^{2n-1}n}\binom{2n-2}{n-1}.
\]
看出母函数(二楼提到了).

母函数 $n$ 次导在 $0$ 处取值即为所求.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-6 08:23:43
Random Walk: Gambler's Ruin - Infinite Fortune看到$$P_0(x)=\sum_{n=0}^\infty\binom{2n}{n}x^n=\frac1{\sqrt{1-4x}},\ |x|<\frac14$$感觉差不多的样子.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list