Forgot password?
 Register account
View 330|Reply 2

[组合] Catalan number$×4^{-n}$求和

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-4-1 04:33 |Read mode
Last edited by hbghlyj 2023-4-2 18:52如何证明WolframAlpha给出的Partial sum formula
\[\sum_{n=0}^{k-1}\frac{\binom{2 n} n}{n+1}4^{-n}= 2-2^{-2 k+1}\binom{2 k}k\]
MSP20172429676a3gbedf39000012c3h629ihf3b1h5.gif
$2=\int_0^1(1-x)^{-1/2}dx$级数

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2023-4-3 01:44
\[\frac{C_{2n}^n}{n+1}\cdot 4^{-n}=\frac{(2n)!}{n!(n+1)!\cdot 2^n\cdot 2^{n+1}}\cdot 2\]
\[=2\cdot\frac{(2n)!}{(2n)!!(2n+2)!!}=\frac{2\cdot (2n-1)!!}{(2n+2)!!}\]
\[=2\cdot\left(\frac{(2n-1)!!\cdot[(2n+2)-(2n+1)]}{(2n+2)!!}\right)\]
\[=2\cdot\left(\frac{(2n-1)!!(2n+2)}{(2n+2)!!}-\frac{(2n+1)!!}{(2n+2)!!}\right)\]
\[=2\cdot\left(\frac{(2n-1)!!}{(2n)!!}-\frac{(2n+1)!!}{(2n+2)!!}\right)\]

\[\sum_{n=0}^{k-1}\frac{C_{2n}^n}{n+1}\cdot 4^{-n}=\sum_{n=0}^{k-1}2\cdot\left(\frac{(2n-1)!!}{(2n)!!}-\frac{(2n+1)!!}{(2n+2)!!}\right)=2-2\frac{(2k-1)!!}{(2k)!!}\]
\[=2-2\frac{(2k)!}{[(2k)!!]^2}=2-2\frac{(2k)!}{4^k(k!)^2}=....\]

Comment

这 !! 裂项真强😃  Posted 2023-4-3 02:29

Mobile version|Discuz Math Forum

2025-6-5 08:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit