Forgot password
 Register account
View 283|Reply 1

[数列] 一道级数求和

[Copy link]

5

Threads

3

Posts

0

Reputation

Show all posts

ZhuYue286 posted 2024-4-24 22:24 |Read mode
请问下式有无较"帅气"的裂项方法证明:
\[\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right)}}-\frac{1}{4}=\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right) \left( 2k+2 \right)}}\]

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-4-25 00:03
\begin{align*}
\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right) \left( 2k+2 \right)}} & = \sum_{k=1}^{\infty}{\dfrac{1}{2k\left( 2k+1 \right)}}-\sum_{k=1}^{\infty}{\dfrac{1}{2k\left( 2k+2 \right)}}\\
& = \sum_{k=1}^{\infty}{\dfrac{1}{2k\left( 2k+1 \right)}}-\dfrac{1}{2}\sum_{k=1}^{\infty}{\left(\dfrac{1}{2k}-\dfrac{1}{2k+2}\right)}\\
& =\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right)}}-\frac{1}{4}
\end{align*}
酱紫?
除了不懂,就是装懂

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 08:07 GMT+8

Powered by Discuz!

Processed in 0.061580 seconds, 35 queries