Forgot password?
 Create new account
View 157|Reply 1

[数列] 一道级数求和

[Copy link]

5

Threads

4

Posts

64

Credits

Credits
64

Show all posts

ZhuYue286 Posted at 2024-4-24 22:24:25 |Read mode
请问下式有无较"帅气"的裂项方法证明:
\[\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right)}}-\frac{1}{4}=\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right) \left( 2k+2 \right)}}\]

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-4-25 00:03:14
\begin{align*}
\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right) \left( 2k+2 \right)}} & = \sum_{k=1}^{\infty}{\dfrac{1}{2k\left( 2k+1 \right)}}-\sum_{k=1}^{\infty}{\dfrac{1}{2k\left( 2k+2 \right)}}\\
& = \sum_{k=1}^{\infty}{\dfrac{1}{2k\left( 2k+1 \right)}}-\dfrac{1}{2}\sum_{k=1}^{\infty}{\left(\dfrac{1}{2k}-\dfrac{1}{2k+2}\right)}\\
& =\sum_{k=1}^{\infty}{\frac{1}{2k\left( 2k+1 \right)}}-\frac{1}{4}
\end{align*}
酱紫?
除了不懂,就是装懂

手机版Mobile version|Leisure Math Forum

2025-4-21 14:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list