Forgot password?
 Create new account
View 199|Reply 4

[数列] 数列求和估计

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-5-13 10:22:59 |Read mode
Last edited by kuing at 2024-1-24 14:35:00证明通项为 $\dfrac{2^{2^n+n+1}}{2^{2^n}+3^{2^n}}$ 的数列的前$n$项和小于$\frac{16}{5}$.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-13 14:15:20
Last edited by Czhang271828 at 2023-5-13 19:20:00翻车+1. 不过可裂项与原函数存在确实有些微妙的联系, 此处
\[
\dfrac{\mathrm d}{\mathrm dx}\dfrac{2\ln ((2/3)^{2^x}+1)}{(\ln 2-\ln 3)\ln 2}=\dfrac{2^{2^x+x+1}}{2^{2^x}+3^{2^x}}.
\]

翻车内容
记 $f(x)=\dfrac{2^{2^x+x+1}}{3^{2^x}+2^{2^x}}=\dfrac{2\cdot 2^x}{1+(3/2)^{2^x}}$, 则可以算出原函数, 观察知 $f(x)$ 在 $x\geq 2$ 时递减.

由于 $\dfrac{16}{5}$ 不是什么精确值, 从而存在 $N$ 使得前 $N$ 项正常求和且 $N+1$ 项后积分放缩后的值小于 $\dfrac{16}{5}$. $N$ 的具体值没算, 总之存在就对了.

Comment

这函数竟然能积出来😯  Posted at 2023-5-13 14:49
很遗憾,这个 N 不存在,因为 16/5 真的是精确值😂  Posted at 2023-5-13 16:23

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-5-13 16:16:27
想起了这帖:kuing.cjhb.site/forum.php?mod=viewthread&tid=7052

于是也试着裂项:因为
\[\frac2{x^2-1}=\frac1{x-1}-\frac1{x+1},\]
令 `x=p^{2^n}` 得
\[\frac2{p^{2^{n+1}}-1}=\frac1{p^{2^n}-1}-\frac1{p^{2^n}+1},\]
两边乘 `2^n` 移项得裂项公式
\[\frac{2^n}{p^{2^n}+1}=\frac{2^n}{p^{2^n}-1}-\frac{2^{n+1}}{p^{2^{n+1}}-1},\]
对于原题,就有
\[\frac{2^{2^n+n+1}}{2^{2^n}+3^{2^n}}=\frac{2^{n+1}}{1+(3/2)^{2^n}}=\frac{2^{n+1}}{(3/2)^{2^n}-1}-\frac{2^{n+2}}{(3/2)^{2^{n+1}}-1},\]
所以前 `n` 项和
\[a_1+a_2+\cdots+a_n=\frac{2^2}{(3/2)^2-1}-\frac{2^{n+2}}{(3/2)^{2^{n+1}}-1}=\frac{16}5-\frac{2^{n+2}}{(3/2)^{2^{n+1}}-1}.\]

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 精彩!

View Rating Log

手机版Mobile version|Leisure Math Forum

2025-4-21 14:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list