Forgot password?
 Create new account
View 151|Reply 1

[不等式] 证明 $\displaystyle\frac12+\frac13+\cdots+\frac1{3^n}\geqslant \frac 56n$.

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2023-3-28 21:30:05 |Read mode
源自知乎提问





证明: $\displaystyle\frac12+\frac13+\cdots+\frac1{3^n}\geqslant \frac 56n$.





尝试数学归纳法.

当 $n=1$ 时,左边等于右边,成立.

假设当 $n=k$ 时有 \[\sum_{i=2}^{3^k}\frac 1i\geqslant \frac 56k,\] 成立,则 \begin{align*}
\sum_{i=2}^{3^{k+1}}\frac 1i&\geqslant\frac56k+\frac1{3^k+1}+\frac1{3^k+2}+\cdots+\frac1{3^{k+1}}\\[1ex]
&=\frac56k+\color{blue}{\frac1{3^k+1}+\cdots+\frac1{3^k+3^k}}+\frac1{3^k+3^k+1}+\cdots+\frac1{3^{k+1}}\\[1ex]
&>\frac56k+\frac 1{3^k+3^k}\cdot 3^k+\frac 1{3^{k+1}}\cdot 3^k\\[1ex]
&=\frac56(k+1),
\end{align*} 即 $n=k+1$ 时亦成立,由数学归纳法知命题成立.
isee=freeMaths@知乎

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-3-29 00:17:16
$\sum_{k=1}^{3^n}\frac1k\sim\log(3^n)=n\log3$
$\log3>1>\frac56$

手机版Mobile version|Leisure Math Forum

2025-4-21 19:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list