Forgot password?
 Register account
View 119|Reply 0

[数列] 证明 $\frac1π\arctan\bigl(\frac13\bigr)$ 是无理数

[Copy link]

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2024-11-10 09:55 |Read mode
参见 math.stackexchange.com/questions/3759727
考虑展开 $(3+i)^n = a_n+ib_n,\;a_n,b_n\in\Bbb Z$
$a_{n+1}+ib_{n+1}=(3+i)(a_n+ib_n)⇒\cases{a_{n+1} = 3a_n-b_n\\b_{n+1} = 3b_n+a_n}$
通过归纳法,
$\cases{a_n \equiv 3 \pmod 5\\b_n \equiv 1 \pmod 5}$
$⇒b_n\ne0$ 对所有 $n$ 成立
$⇒\arg(3+i)^n =n\arctan\bigl(\frac13\bigr)\notinπ\Bbb Z$ 对所有 $n$ 成立
$⇒\frac1π\arctan\bigl(\frac13\bigr)$ 是无理数。

Mobile version|Discuz Math Forum

2025-6-7 12:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit