Forgot password?
 Create new account
View 159|Reply 1

[数列] 裂项求和 $\sum (-1)^i(i+1)$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-10-23 22:02:56 |Read mode
源自知乎提问


:求证:\[\sum_{i=1}^{n}(-1)^i(i+1)=\frac{(-1)^n(2n+3)-3}4.\]






给一个初等解,裂项.

令 \[a_n=(-1)^n(n+1)=b_{n+1}-b_n,\]且 \[b_n=(-1)^n(An+B).\] 其中 $A,B$ 为待定常数,于是得到恒等式 \begin{gather*}
(-1)^n(n+1)=(-1)^{n+1}(An+A+B)-(-1)^n(An+B)\\[1ex]
n+1=(-1)(An+A+B)-(An+B)\\[1ex]
n+1=-2An-A-2B\\[1em]
\Rightarrow \left\{\begin{aligned}-2A&=1,\\[1ex]
-A-2B&=1\end{aligned}\right. \Rightarrow \left\{\begin{aligned}A&=-\frac 12,\\[1ex]
B&=-\frac 14.\end{aligned}\right.\\[1ex]

\end{gather*} 即有 \[\color{blue}{b_n=(-1)^n\left(-\frac 12n-\frac 14\right)},\] 于是 \begin{align*}
&\quad\, \sum_{i=1}^{n}(-1)^i(i+1)\\[1ex]
&=a_1+a_2+\cdots+a_n\\[1ex]
&=(-b_1+b_2)+(-b_2+b_3)+\cdots+(-b_n+b_{n+1})\\[1ex]
&=-b_1+b_{n+1}\\[1ex]
&=-\frac34+\frac{(-1)^n(2n+3)}4.
\end{align*}
isee=freeMaths@知乎

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2022-10-23 22:44:03
$q=-1,~p(i)=i+1,~\Delta p(i)=1$
$\displaystyle f(n)=\frac{p(n)}{q-1}-\frac{\Delta p(n)}{(q-1)^2}
=-\frac{n+1}{2}-\frac{1}{4}=-\frac{2n+3}{4}$
$\displaystyle f(0)=-\frac{3}{4}$
$\displaystyle \sum_{i=1}^n (-1)^i (i+1)=-f(n)q^n+f(0)
=\frac{2n+3}{4}(-1)^n-\frac{3}{4}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list