Forgot password
 Register account
View 193|Reply 1

[数列] 能不能直接放缩为等比求和?

[Copy link]

282

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2022-10-4 13:47 |Read mode
Last edited by kuing 2024-1-21 18:24已知$a_n=\dfrac{2^{n-1}}{2^{2n-1}+3\cdot 2^{n-1}+1}$,证明:$a_n$的前n项和 $<\dfrac{1}{2}$.
这道题可先裂项后得到结果.
我想知道并求助的是:这题能不能放缩为等比数列后求和证明结论?谢谢!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-10-4 14:27
裂项是
\[\frac{2^{n-1}}{2^{2n-1}+3\cdot2^{n-1}+1}=\frac1{2^{n-1}+1}-\frac1{2^n+1},\]
那就是
\[S_n=\frac12-\frac1{2^n+1},\]
所以 `S_\infty=1/2`,那怎么可能放缩为等比呢?就算你从第 10000 项开始放缩,这一项放缩产生的误差哪怕是 0.00001,放缩完之后的和当 n 足够大时也必然大于 1/2+0.00001。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:54 GMT+8

Powered by Discuz!

Processed in 0.014952 seconds, 30 queries