Forgot password?
 Create new account
View 169|Reply 1

[数列] 能不能直接放缩为等比求和?

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2022-10-4 13:47:49 |Read mode
Last edited by kuing at 2024-1-21 18:24:00已知$a_n=\dfrac{2^{n-1}}{2^{2n-1}+3\cdot 2^{n-1}+1}$,证明:$a_n$的前n项和 $<\dfrac{1}{2}$.
这道题可先裂项后得到结果.
我想知道并求助的是:这题能不能放缩为等比数列后求和证明结论?谢谢!

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2022-10-4 14:27:01
裂项是
\[\frac{2^{n-1}}{2^{2n-1}+3\cdot2^{n-1}+1}=\frac1{2^{n-1}+1}-\frac1{2^n+1},\]
那就是
\[S_n=\frac12-\frac1{2^n+1},\]
所以 `S_\infty=1/2`,那怎么可能放缩为等比呢?就算你从第 10000 项开始放缩,这一项放缩产生的误差哪怕是 0.00001,放缩完之后的和当 n 足够大时也必然大于 1/2+0.00001。

手机版Mobile version|Leisure Math Forum

2025-4-21 22:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list