Forgot password
 Register account
View 318|Reply 0

[数列] 三倍角公式 级数

[Copy link]

3222

Threads

7841

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-8-13 21:25 |Read mode
Last edited by hbghlyj 2024-4-24 19:26 Untitled.gif
Untitled.gif
$$ \sum_{k=0}^\infty \frac{\sin^3(3^k)}{3^k} =\frac{3\sin(1)}4$$
部分和:
$$ S(n) = \sum_{k=0}^n \frac{\sin^3(3^k)}{3^k} = \frac{3\sin(1)-3^{-n}\sin(3^{n+1})}{4}  $$
证明:由公式$ \sin(3a) = 3 \sin(a) - 4 \sin^3(a) $得
$$ \sin^3(a)=\frac{3 \sin(a)- \sin(3a)}4 .$$  
代入$a=3^k$:
\begin{eqnarray*}
  S(n) &=& \sum_{k=0}^n \sin^3(3^k)/3^k  \\
       &=& \frac14\sum_{k=0}^n [3 \sin(3^k)-\sin(3^{k+1})]/3^k  \\
       &=& \frac{3}{4}[\sum_{k=0}^n \sin(3^k)/3^k-\sum_{k=0}^n \sin(3^{k+1})/3^{k+1}]\\&=&\frac{3\sin(1)-3^{-n}\sin(3^{n+1})}{4}
\end{eqnarray*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 21:39 GMT+8

Powered by Discuz!

Processed in 0.021996 seconds, 47 queries