Forgot password?
 Create new account
View 272|Reply 11

[函数] 求三角函数的值

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-4-4 13:25:29 |Read mode
求$\dfrac{1}{\cos24^0}+\dfrac{1}{\cos48^0}+\dfrac{1}{\cos96^0}+\dfrac{1}{\cos192^0}$的值。

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-4-4 14:47:40
使用
$$
\frac{1}{\cos 2x}=\frac{\cos (2x-x)}{\cos x\cos 2x}=1+\tan x\tan 2x.
$$
因此有
\begin{align*}
\text{原式}&=4+\tan 12\tan 24+\tan 24\tan 48+\tan 48\tan 96+\tan 96\tan 12\\[6pt]
&=4+(\tan 12+\tan 48)(\tan 24+\tan 96)\\[6pt]
&=4+\frac{\sin 60}{\cos 12\cos 48}\frac{\sin 120}{\cos 24\cos 96}\\[6pt]
&=4+\frac{3}{4}\frac 1{\cos 12\cos 24\cos 48\cos 96}\\[6pt]
&=4+\frac{3}{4}\frac {16\sin 12}{16\sin 12\cos 12\cos 24\cos 48\cos 96}\\[6pt]
&=4+\frac{3}{4}\frac {16\sin 12}{\sin 192}\\[6pt]
&=-8.
\end{align*}

Comment

腻害呀!😃  Posted at 2024-4-4 14:50

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-4-4 15:15:07
$\cos24^\circ,\cos48^\circ,\cos96^\circ,\cos192^\circ$为四次方程$x^4-\dfrac{1}{2}x^3-x^2+\dfrac{1}{2}x+\dfrac{1}{16}=0$的四个根?
除了不懂,就是装懂

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-4-4 16:47:16
由恒等式\[\sum_{k=1}^n\sec\frac{2k\pi}{2n+1}=(-1)^n\left( n+\dfrac12+\dfrac{(-1)^{n+1}}2 \right)  \]
得\[\sum_{k=1}^7\sec\frac{2k\pi}{15}=-8\]
而\[\sec\frac{6\pi}{15}+\sec\frac{10\pi}{15}+\sec\frac{12\pi}{15}=-2+\sum_{k=1}^2\sec\frac{2k\pi}{5}=-2+2=0\]
\[\sec\frac{14\pi}{15}=-\sec\frac{\pi}{15}=\sec\frac{16\pi}{15}\]
所以\[\sec\frac{2\pi}{15}+\sec\frac{4\pi}{15}+\sec\frac{8\pi}{15}+\sec\frac{16\pi}{15}=-8\]

Comment

厉害!恒等关系随手拈来!  Posted at 2024-4-4 19:34
除了不懂,就是装懂

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2024-4-4 19:53:23
睡神 发表于 2024-4-4 15:15
$\cos24^\circ,\cos48^\circ,\cos96^\circ,\cos192^\circ$为四次方程$x^4-\dfrac{1}{2}x^3-x^2+\dfrac{1}{2 ...
这个方程是如何知道的呀?

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

hejoseph Posted at 2024-4-4 21:14:27
Last edited by hejoseph at 2024-4-4 21:22:00
lemondian 发表于 2024-4-4 19:53
这个方程是如何知道的呀?
上面等式用分圆多项式可以得到结论,上面那个恒等式直接用 Chebyshev 多项式的结论就可以了。另外,角度输入应该用^\circ而不是0次方。

Comment

膜拜何版!  Posted at 2024-4-4 22:15

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-4-5 01:26:28
lemondian 发表于 2024-4-4 19:53
这个方程是如何知道的呀?
我写一下咯

$x_k=\cos\dfrac{2k\pi}{15}+i\sin\dfrac{2k\pi}{15},k\in {0,1,2,\cdots ,14}$为

$x^{15}-1=(x-1)(x^2+x+1)(x^4+x^3+x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)=0$的15个根
除了不懂,就是装懂

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-4-5 14:12:08

Comment

虽然我的Latex和数学一样的菜,但看到楼主的Latex后,瞬间就觉得我的Latex还不是最菜的  Posted at 2024-4-7 08:50

手机版Mobile version|Leisure Math Forum

2025-4-21 14:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list